693 resultados para Teorema de Poincar´e-Bendixson
Resumo:
We consider the asymptotic behaviour of the realized power variation of processes of the form ¿t0usdBHs, where BH is a fractional Brownian motion with Hurst parameter H E(0,1), and u is a process with finite q-variation, q<1/(1¿H). We establish the stable convergence of the corresponding fluctuations. These results provide new statistical tools to study and detect the long-memory effect and the Hurst parameter.
Resumo:
El estudio aristotélico del tiempo (Phys. IV, 10-14), centrado en su definición del mismo como "número del movimiento según el antes y el después", presenta una sorprendente ausencia: en él no halla aplicación, como cabría esperar, la definición previamente dada del movimiento como "acto de la potencia en cuianto tal". Sin embargo, se muestra que la epistemología aristotélica permitiría esperar una (al aplicación. Asimismo, para mostrar quedicha aplicación sería posible, se ofrece una prueba, partiendo de la definición de movimiento, del teorema "lo que se mueve, se mueve de algo a algo", básico para la defiinición del tiempo como número del movimiento.
Resumo:
Treball final de carrera basat en el reconeixement de punts clau en imatges mitjançant l'algorisme Random Ferns.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
In this paper we consider C1 vector fields X in R3 having a “generalized heteroclinic loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere S2 and a diameter connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on . The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincar´e map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics.
Resumo:
In this paper we consider vector fields in R3 that are invariant under a suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two singular points (e+ and e −) and their invariant manifolds: one of dimension 2 (a sphere minus the points e+ and e −) and one of dimension 1 (the open diameter of the sphere having endpoints e+ and e −). In particular, we analyze the dynamics of the vector field near the heteroclinic loop L by means of a convenient Poincar´e map, and we prove the existence of infinitely many symmetric periodic orbits near L. We also study two families of vector fields satisfying this dynamics. The first one is a class of quadratic polynomial vector fields in R3, and the second one is the charged rhomboidal four body problem.
Resumo:
En este art\'\i culo se presenta, con una gran variedad de ejemplos, unm\'etodo para sacar ra\'\i ces cuadradas exactas. Este m\'etodo se present\'opor primera vez hace 15 a\~nos con el nombre de ley Costeana, pero adiferencia de ahora se enfatiza en el hecho que puede ser implementadoen el curso de cuarto de primaria, al cual asiste la autora (primer autor)de este articulo.
Resumo:
En el presente documento se describe un ejercicio de simulación orientado a facilitar la comprensión y asimilación del funcionamiento de la votación por mayoría y la regla de Borda. El ejercicio consiste en proponer a los alumnos que escojan entre dos proyectos (un programa de becas y una ampliación de las aulas de estudio) que presuntamente se van a realizar en la facultad en la que estudian. Para determinar qué proyecto se debería llevar a cabo se utiliza las reglas de la mayoría y Borda. Los alumnos deben responder a diversas rondas de votaciones donde el orden de la votación o agenda ha sido determinada por el instructor. El ejercicio es útil para exponer y debatir las cuestiones que se explican en un curso estándar de Hacienda Pública sobre el uso de la regla de la mayoría y la regla de Borda, como por ejemplo, la existencia de ciclos en los resultados de una votación, la posibilidad de condicionar el resultado de las votaciones mediante la manipulación de la agenda, el comportamiento estratégico, la formación de coaliciones, las propiedades del teorema de Arrow y la eficiencia de la(s) diferentes alternativas escogidas. El ejercicio se enmarca como parte de las actividades realizadas por el Grupo de Innovación Docente (GID-HAL) de la Universidad de Barcelona.
Resumo:
Este trabalho foi desenvolvido com o objetivo de ajustar equações que estimam a perda distribuída de carga em microtubos utilizados em microaspersão e a perda localizada de carga na passagem lateral do fluxo por meio dos conectores na linha lateral. A perda distribuída de carga foi determinada em quatro diâmetros de microtubos com nove a dez repetições para 15 vazões, por meio da aplicação do teorema de Bernoulli. O fator de atrito (f) foi estimado fixando-se o valor de m = 0,25 e calibrando-se o valor do parâmetro c (0,290). A perda localizada de carga foi determinada por diferença entre perda de carga no microtubo mais conector e perda de carga no microtubo. Dois modelos de conectores foram utilizados e caracterizados quanto ao diâmetro interno e dimensões. Uma aproximação matemática foi proposta para calcular a perda localizada de carga com base em coeficiente de carga cinética do conector (K'), que leva em consideração as dimensões do conector e do microtubo e independência das forças viscosas para Re > 5.000. As variações de vazão e de pressão entre os emissores situados nos extremos da linha lateral mostraram-se sensíveis à perda de carga na passagem lateral pelo conector mais a perda de carga no microtubo.
Resumo:
Referee-artikkeli
Resumo:
The main purpose of this study was to investigate the level of agreement between the gas exchange threshold (GET) and heart rate variability threshold (HRVT) during maximal cardiopulmonary exercise testing (CPET) using three different exercise modalities. A further aim was to establish whether there was a 1:1 relationship between the percentage heart rate reserve (%HRR) and percentage oxygen uptake reserve (%V˙O2R) at intensities corresponding to GET and HRVT. Sixteen apparently healthy men 17 to 28 years of age performed three maximal CPETs (cycling, walking, and running). Mean heart rate and V˙O2 at GET and HRVT were 16 bpm (P<0.001) and 5.2 mL·kg-1·min-1 (P=0.001) higher in running than cycling, but no significant differences were observed between running and walking, or cycling and walking (P>0.05). There was a strong relationship between GET and HRVT, with R2 ranging from 0.69 to 0.90. A 1:1 relationship between %HRR and %V˙O2R was not observed at GET and HRVT. The %HRR was higher during cycling (GET mean difference=7%; HRVT mean difference=11%; both P<0.001), walking (GET mean difference=13%; HRVT mean difference=13%; both P<0.001), or running (GET mean difference=11%; HRVT mean difference=10%; both P<0.001). Therefore, using HRVT to prescribe aerobic exercise intensity appears to be valid. However, to assume a 1:1 relationship between %HRR and %V˙O2R at HRVT would probably result in overestimation of the energy expenditure during the bout of exercise.
Resumo:
Symbolic dynamics is a branch of mathematics that studies the structure of infinite sequences of symbols, or in the multidimensional case, infinite grids of symbols. Classes of such sequences and grids defined by collections of forbidden patterns are called subshifts, and subshifts of finite type are defined by finitely many forbidden patterns. The simplest examples of multidimensional subshifts are sets of Wang tilings, infinite arrangements of square tiles with colored edges, where adjacent edges must have the same color. Multidimensional symbolic dynamics has strong connections to computability theory, since most of the basic properties of subshifts cannot be recognized by computer programs, but are instead characterized by some higher-level notion of computability. This dissertation focuses on the structure of multidimensional subshifts, and the ways in which it relates to their computational properties. In the first part, we study the subpattern posets and Cantor-Bendixson ranks of countable subshifts of finite type, which can be seen as measures of their structural complexity. We show, by explicitly constructing subshifts with the desired properties, that both notions are essentially restricted only by computability conditions. In the second part of the dissertation, we study different methods of defining (classes of ) multidimensional subshifts, and how they relate to each other and existing methods. We present definitions that use monadic second-order logic, a more restricted kind of logical quantification called quantifier extension, and multi-headed finite state machines. Two of the definitions give rise to hierarchies of subshift classes, which are a priori infinite, but which we show to collapse into finitely many levels. The quantifier extension provides insight to the somewhat mysterious class of multidimensional sofic subshifts, since we prove a characterization for the class of subshifts that can extend a sofic subshift into a nonsofic one.
Resumo:
La marche occupe un rôle important dans la vie quotidienne. Ce processus apparaît comme facile et naturel pour des gens en bonne santé. Cependant, différentes sortes de maladies (troubles neurologiques, musculaires, orthopédiques...) peuvent perturber le cycle de la marche à tel point que marcher devient fastidieux voire même impossible. Ce projet utilise l'application de Poincaré pour évaluer l'asymétrie de la marche d'un patient à partir d'une carte de profondeur acquise avec un senseur Kinect. Pour valider l'approche, 17 sujets sains ont marché sur un tapis roulant dans des conditions différentes : marche normale et semelle de 5 cm d'épaisseur placée sous l'un des pieds. Les descripteurs de Poincaré sont appliqués de façon à évaluer la variabilité entre un pas et le cycle complet de la marche. Les résultats montrent que la variabilité ainsi obtenue permet de discriminer significativement une marche normale d'une marche avec semelle. Cette méthode, à la fois simple à mettre en oeuvre et suffisamment précise pour détecter une asymétrie de la marche, semble prometteuse pour aider dans le diagnostic clinique.
Resumo:
Mathematical models are often used to describe physical realities. However, the physical realities are imprecise while the mathematical concepts are required to be precise and perfect. Even mathematicians like H. Poincare worried about this. He observed that mathematical models are over idealizations, for instance, he said that only in Mathematics, equality is a transitive relation. A first attempt to save this situation was perhaps given by K. Menger in 1951 by introducing the concept of statistical metric space in which the distance between points is a probability distribution on the set of nonnegative real numbers rather than a mere nonnegative real number. Other attempts were made by M.J. Frank, U. Hbhle, B. Schweizer, A. Sklar and others. An aspect in common to all these approaches is that they model impreciseness in a probabilistic manner. They are not able to deal with situations in which impreciseness is not apparently of a probabilistic nature. This thesis is confined to introducing and developing a theory of fuzzy semi inner product spaces.