961 resultados para Techniques: images processing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of iris recognition for human authentication has been spreading in the past years. Daugman has proposed a method for iris recognition, composed by four stages: segmentation, normalization, feature extraction, and matching. In this paper we propose some modifications and extensions to Daugman's method to cope with noisy images. These modifications are proposed after a study of images of CASIA and UBIRIS databases. The major modification is on the computationally demanding segmentation stage, for which we propose a faster and equally accurate template matching approach. The extensions on the algorithm address the important issue of pre-processing that depends on the image database, being mandatory when we have a non infra-red camera, like a typical WebCam. For this scenario, we propose methods for reflection removal and pupil enhancement and isolation. The tests, carried out by our C# application on grayscale CASIA and UBIRIS images show that the template matching segmentation method is more accurate and faster than the previous one, for noisy images. The proposed algorithms are found to be efficient and necessary when we deal with non infra-red images and non uniform illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence confocal microscopy (FCM) is now one of the most important tools in biomedicine research. In fact, it makes it possible to accurately study the dynamic processes occurring inside the cell and its nucleus by following the motion of fluorescent molecules over time. Due to the small amount of acquired radiation and the huge optical and electronics amplification, the FCM images are usually corrupted by a severe type of Poisson noise. This noise may be even more damaging when very low intensity incident radiation is used to avoid phototoxicity. In this paper, a Bayesian algorithm is proposed to remove the Poisson intensity dependent noise corrupting the FCM image sequences. The observations are organized in a 3-D tensor where each plane is one of the images acquired along the time of a cell nucleus using the fluorescence loss in photobleaching (FLIP) technique. The method removes simultaneously the noise by considering different spatial and temporal correlations. This is accomplished by using an anisotropic 3-D filter that may be separately tuned in space and in time dimensions. Tests using synthetic and real data are described and presented to illustrate the application of the algorithm. A comparison with several state-of-the-art algorithms is also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amount of fat is a component that complicates the clinical evaluation and the differential diagnostic between benign and malign lesions in the breast MRI examinations. To overcome this problem, an effective erasing of the fat signal over the images acquisition process, is essentials. This study aims to compare three fat suppression techniques (STIR, SPIR, SPAIR) in the MR images of the breast and to evaluate the best image quality regarding its clinical usefulness. To mimic breast women, a breast phantom was constructed. First the exterior contour and, in second time, its content which was selected based on 7 samples with different components. Finally it was undergone to a MRI breast protocol with the three different fat saturation techniques. The examinations were performed on a 1.5 T MRI system (Philips®). A group of 5 experts evaluated 9 sequences, 3 of each with fat suppression techniques, in which the frequency offset and TI (Inversion Time) were the variables changed. This qualitative image analysis was performed according 4 parameters (saturation uniformity, saturation efficacy, detail of the anatomical structures and differentiation between the fibroglandular and adipose tissue), using a five-point Likert scale. The statistics analysis showed that anyone of the fat suppression techniques demonstrated significant differences compared to the others with (p > 0.05) and regarding each parameter independently. By Fleiss’ kappa coefficient there was a good agreement among observers P(e) = 0.68. When comparing STIR, SPIR and SPAIR techniques it was confirmed that all of them have advantages in the study of the breast MRI. For the studied parameters, the results through the Friedman Test showed that there are similar advantages applying anyone of these techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introdução – Os estudos Gated – Single Photon Emission Computed Tomography (SPECT) são uma das técnicas de imagiologia cardíaca que mais evoluiu nas últimas décadas. Para a análise das imagens obtidas, a utilização de softwares de quantificação leva a um aumento da reprodutibilidade e exatidão das interpretações. O objetivo deste estudo consiste em avaliar, em estudos Gated-SPECT, a variabilidade intra e interoperador de parâmetros quantitativos de função e perfusão do miocárdio, obtidos com os softwares Quantitative Gated SPECT (QGS) e Quantitative Perfusion SPECT (QPS). Material e métodos – Recorreu-se a uma amostra não probabilística por conveniência de 52 pacientes, que realizaram estudos Gated-SPECT do miocárdio por razões clínicas e que integravam a base de dados da estação de processamento da Xeleris da ESTeSL. Os cinquenta e dois estudos foram divididos em dois grupos distintos: Grupo I (GI) de 17 pacientes com imagens com perfusão do miocárdio normal; Grupo II (GII) de 35 pacientes que apresentavam defeito de perfusão nas imagens Gated-SPECT. Todos os estudos foram processados 5 vezes por 4 operadores independentes (com experiência de 3 anos em Serviços de Medicina Nuclear com casuística média de 15 exames/semana de estudos Gated-SPECT). Para a avaliação da variabilidade intra e interoperador foi utilizado o teste estatístico de Friedman, considerando α=0,01. Resultados e discussão – Para todos os parâmetros avaliados, os respectivos valores de p não traduziram diferenças estatisticamente significativas (p>α). Assim, não foi verificada variabilidade intra ou interoperador significativa no processamento dos estudos Gated-SPECT do miocárdio. Conclusão – Os softwares QGS e QPS são reprodutíveis na quantificação dos parâmetros de função e perfusão avaliados, não existindo variabilidade introduzida pelo operador.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic resonance (MR) imaging has been used to analyse and evaluate the vocal tract shape through different techniques and with promising results in several fields. Our purpose is to demonstrate the relevance of MR and image processing for the vocal tract study. The extraction of contours of the air cavities allowed the set - up of a number of 3D reconstruction image stacks by means of the combination of orthogonally oriented sets of slices for e ach articulatory gesture, as a new approach to solve the expected spatial under sampling of the imaging process. In result these models give improved information for the visualization of morphologic and anatomical aspects and are useful for partial measure ments of the vocal tract shape in different situations. Potential use can be found in Medical and therapeutic applications as well as in acoustic articulatory speech modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. OBJECTIVE: The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed.METHODS: The effect of emotional valence and visualization types and their interaction were analyzed through a 3x2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. RESULTS: The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. CONCLUSIONS: This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios’ valence) and their interaction with three-dimensionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When exploring a virtual environment, realism depends mainly on two factors: realistic images and real-time feedback (motions, behaviour etc.). In this context, photo realism and physical validity of computer generated images required by emerging applications, such as advanced e-commerce, still impose major challenges in the area of rendering research whereas the complexity of lighting phenomena further requires powerful and predictable computing if time constraints must be attained. In this technical report we address the state-of-the-art on rendering, trying to put the focus on approaches, techniques and technologies that might enable real-time interactive web-based clientserver rendering systems. The focus is on the end-systems and not the networking technologies used to interconnect client(s) and server(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drilling of composites plates normally uses traditional techniques but damage risk is high. NDT use is important. Damage in a carbon/epoxy plate is evaluated by enhanced X-rays. Four different drills are used. The images are analysed using Computational Vision techniques. Surface roughness is compared. Results suggest strategies for delamination reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A antropologia forense é uma disciplina das ciências forenses que trata da análise de restos cadavéricos humanos para fins legais. Uma das suas aplicações mais populares é a identificação forense que consiste em determinar o perfil biológico (idade, sexo, ancestralidade e estatura) de um indivíduo. No entanto, este processo muitas vezes é dificultado quando o corpo se encontra em avançado estado de decomposição apenas existindo restos esqueléticos. Neste caso, áreas médicas comummente utilizadas na identificação de cadáveres, como a patologia, tem de ser descartadas e surge a necessidade de aplicar outras técnicas. Neste contexto, muitos métodos antropométricos são propostos de forma a caracterizar uma pessoa através do seu esqueleto. Contudo, constata-se que a maioria dos procedimentos sugeridos é baseada em equipamentos básicos de medição, não usufruindo da tecnologia contemporânea. Assim, em parceria com a Delegação Norte do NMLCF, I. P., esta Tese teve na sua génese a criação de um sistema computacional baseado em imagens de Tomografia Computorizada (TC) de ossadas que, através de ferramentas open source, permita a realização de identificação forense. O trabalho apresentado baseia-se no processo de gestão de informação, aquisição, processamento e visualização de imagens TC. No decorrer da realização da presente Tese foi desenvolvida uma base de dados que permite organizar a informação de cada ossada e foram implementados algoritmos que levam a uma extracção de características muito mais vasta que a efetuada manualmente com os equipamentos de medição clássicos. O resultado final deste estudo consistiu num conjunto de técnicas que poderão ser englobadas num sistema computacional de identificação forense e deste modo criar uma aplicação com vantagens tecnológicas evidentes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the performance of Immunomagnetic Separation technique, coupled with Immunofluorescence (IMS-IFA), was compared with the FAUST et al. and Lutz parasitological techniques for the detection of Giardia lamblia cysts in human feces. One hundred and twenty-seven samples were evaluated by the three techniques at the same time showing a rate of cyst detection of 27.5% by IMS-IFA and 15.7% by both Faust et al. and Lutz techniques. Data analysis showed a higher sensitivity of IMS-IFA for the detection of G. lamblia cysts in comparison with the techniques of FAUST et al. and Lutz. The use of this methodology as a routine procedure enables the processing of many samples simultaneously, in order to increase recovery rate of G. lamblia cysts and reduce the time of sample storage.