995 resultados para TTX-Resistant Sodium Channels
Resumo:
Greater attention has been focused on the use of CDMA for future cellular mobile communications. CA near-far resistant detector for asynchronous code-division multiple-access (CDMA) systems operating in additive white Gaussian noise (AWGN) channels is presented. The multiuser interference caused by K users transmitting simultaneously, each with a specific signature sequence, is completely removed at the receiver. The complexity of this detector grows only linearly with the number of users, as compared to the optimum multiuser detector which requires exponential complexity in the number of users. A modified algorithm based on time diversity is described. It performs detection on a bit-by-bit basis and overcomes the complexity of using a sequence detector. The performance of this detector is shown to be superior to that of the conventional receiver.
Resumo:
Cannabidiol (CBD) is a non-psychoactive, well-tolerated, anticonvulsant plant cannabinoid, although its mechanism(s) of seizure suppression remains unknown. Here, we investigate the effect of CBD and the structurally similar cannabinoid, cannabigerol (CBG), on voltage-gated Na+ (NaV) channels, a common anti-epileptic drug target. CBG’s anticonvulsant potential was also assessed in vivo. CBD effects on NaV channels were investigated using patch-clamp recordings from rat CA1 hippocampal neurons in brain slices, human SH-SY5Y (neuroblastoma) cells and mouse cortical neurons in culture. CBG effects were also assessed in SH-SY5Y cells and mouse cortical neurons. CBD and CBG effects on veratridine-stimulated human recombinant NaV1.1, 1.2 or 1.5 channels were assessed using a membrane potential-sensitive fluorescent dye high-throughput assay. The effect of CBG on pentyleneterazole-induced (PTZ) seizures was assessed in rat. CBD (10M) blocked NaV currents in SH-SY5Y cells, mouse cortical neurons and recombinant cell lines, and affected spike parameters in rat CA1 neurons; CBD also significantly decreased membrane resistance. CBG blocked NaV to a similar degree to CBD in both SH-SY5Y and mouse recordings, but had no effect (50-200mg/kg) on PTZ-induced seizures in rat. CBD and CBG are NaV channel blockers at micromolar concentrations in human and murine neurons and recombinant cells. In contrast to previous reports investigating CBD, CBG had no effect upon PTZ-induced seizures in rat, indicating that NaV blockade per se does not correlate with anticonvulsant effects.
Resumo:
Little information exists on the effects of ensiling on condensed tannins or proanthocyanidins. The acetone–butanol–HCl assay is suitable for measuring proanthocyanidin contents in a wide range of samples, silages included, but provides limited information on proanthocyanidin composition, which is of interest for deciphering the relationships between tannins and their bioactivities in terms of animal nutrition or health. Degradation with benzyl mercaptan (thiolysis) provides information on proanthocyanidin composition, but proanthocyanidins in several sainfoin silages have proved resistant to thiolysis. We now report that a pretreatment step with sodium hydroxide prior to thiolysis was needed to enable their analysis. This alkaline treatment increased their extractability from ensiled sainfoin and facilitated especially the release of larger proanthocyanidins. Ensiling reduced assayable proanthocyanidins by 29%, but the composition of the remaining proanthocyanidins in silage resembled that of the fresh plants.
Resumo:
To investigate the kdr (knockdown resistance) resistance-associated gene mutation and determine its frequency in pyrethroid-resistant horn fly (Haematobia irritans) populations, a total of 1,804 horn flies of 37 different populations from all Brazilian regions (North, Northeast, Central-West, Southeast, and South) were molecular screened through polymerase chain reaction (PCR). The kdr gene was not detected in 87.08% of the flies. However, the gene was amplified in 12.92% of the flies, of which 11.70% were resistant heterozygous and 1.22% were resistant homozygous. Deviation from Hardy-Weinberg equilibrium (HWE) was found only in 1 ranch with an excess of heterozygous. When populations were grouped by region, three metapopulations showed significant deviations of HWE (Central-West population, South population and Southeast population). This indicates that populations are isolated one from another and kdr occurrence seems to be an independent effect probably reflecting the insecticide strategy used by each ranch. Although resistance to pyrethroids is disseminated throughout Brazil, only 48% of resistant populations had kdr flies, and the frequency of kdr individuals in each of these resistant populations was quite low. But this study shows that, with the apparent exception of the Northeast region, the kdr mechanism associated with pyrethroid resistance occurs all over Brazil.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The structural specificity of alpha-PMTX, a novel peptide toxin derived from wasp venom has been studied on the neuromuscular synapse in the walking leg of the lobster. alpha-PMTX is known to induce repetitive action potentials in the presynaptic axon due to sodium channel inactivation. We synthesized 29 analogs of alpha-PMTX by substituting one or two amino acids and compared threshold concentrations of these mutant toxins for inducing repetitive action potentials. In 13 amino acid residues of alpha-PMTX, Arg-1, Lys-3 and Lys-12 regulate the toxic activity because substitution of these basic amino acid residues with other amino acid residues greatly changed the potency. Determining the structure-activity relationships of PMTXs will help clarifying the molecular mechanism of sodium channel inactivation. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Antimicrobials have unquestionable importance in the control of many diseases; however the constant concern with evolution of resistant microorganisms is increasing. The ertapenem sodium is a β-lactam antibiotic of the carbapenem class, which it has a broader activity spectrum than most other β-lactam antimicrobials, and is more resistant to the enzyme β-lactamase, which is the main mechanism of resistance of many bacteria. The progress of microbial resistance to existing antibiotics is alarming. Thus we need to preserve antimicrobials that still have activity against these pathogens. In this context, the quality control has a key role to ensure the correct dosage, by contributing preventively to minimize the development of resistant microorganisms. Study of the physicochemical characteristics of the drug and the quantification of the content of active substance are of fundamental importance for the pharmaceutical industry to ensure the quality of the product sold. This work presents a literature survey of existing methods for ertapenem sodium quantification which was performed. Ertapenem sodium can be analyzed by many types of assays; however the HPLC is the most used method. This review will examine the published analytical methods reported for determination of ertapenem sodium, in biological fluids and formulations.
Resumo:
Carbapenem resistance amongst Acinetobacter spp. has been increasing in the last decade. This study evaluated the outer membrane protein (OMP) profile and production of carbapenemases in 50 carbapenem-resistant Acinetobacter spp. isolates from bloodstream infections. Isolates were identified by API20NE. Minimum inhibitory concentrations (MICs) for carbapenems were determined by broth microdilution. Carbapenemases were studied by phenotypic tests, detection of their encoding gene by polymerase chain reaction (PCR) amplification, and imipenem hydrolysis. Nucleotide sequencing confirming the enzyme gene type was performed using MegaBACE 1000. The presence of OMPs was studied by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and PCR. Molecular typing was performed using pulsed-field gel electrophoresis (PFGE). All isolates were resistant to carbapenems. Moreover, 98% of the isolates were positive for the gene encoding the enzyme OXA-51-like, 18% were positive for OXA-23-like (only one isolate did not show the presence of the insertion sequence ISAba1 adjacent to this gene) and 76% were positive for OXA-143 enzyme. Five isolates (10%) showed the presence of the IMP-1 gene. Imipenem hydrolysing activity was detected in only three strains containing carbapenemase genes, comprising two isolates containing the bla(IMP) gene and one containing the bla(OXA-51/OXA-23-like) gene. The OMP of 43 kDa was altered in 17 of 25 strains studied, and this alteration was associated with a high meropenem MIC (256 mu g/mL) in 5 of 7 strains without 43 kDa OMP. On the other hand, decreased OMP 33-36 kDa was found in five strains. The high prevalence of OXA-143 and alteration of OMPs might have been associated with a high level of carbapenem resistance. (C) 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Osmoregulatory mechanisms can be vulnerable to electrolyte and/or endocrine environmental changes during the perinatal period, differentially programming the developing offspring and affecting them even in adulthood. The aim of this study was to evaluate whether availability of hypertonic sodium solution during the perinatal period may induce a differential programming in adult offspring osmoregulatory mechanisms. With this aim, we studied water and sodium intake after Furosemide-sodium depletion in adult offspring exposed to hypertonic sodium solution from 1 week before mating until postnatal day 28 of the offspring, used as a perinatal manipulation model [PM-Na group]. In these animals, we also identified the cell population groups in brain nuclei activated by Furosemide-sodium depletion treatment, analyzing the spatial patterns of Fos and Fos-vasopressin immunoreactivity. In sodium depleted rats, sodium and water intake were significantly lower in the PM-Na group vs. animals without access to hypertonic sodium solution [PM-Ctrol group]. Interestingly, when comparing the volumes consumed of both solutions in each PM group, our data show the expected significant differences between both solutions ingested in the PM-Ctrol group, which makes an isotonic cocktail: however, in the PM-Na group there were no significant differences in the volumes of both solutions consumed after Furosemide-sodium depletion, and therefore the sodium concentration of total fluid ingested by this group was significantly higher than that in the PM-Ctrol group. With regard to brain Fos immunoreactivity, we observed that Furosemide-sodium depletion in the PM-Na group induced a higher number of activated cells in the subfornical organ, ventral subdivision of the paraventricular nucleus and vasopressinergic neurons of the supraoptic nucleus than in the PM-Ctrol animals. Moreover, along the brainstem, we found a decreased number of sodium depletion-activated cells within the nucleus of the solitary tract of the PM-Na group. Our data indicate that early sodium availability induces a long-term effect on fluid drinking and on the cell activity of brain nuclei involved in the control of hydromineral balance. These results also suggest that availability of a rich source of sodium during the perinatal period may provoke a larger anticipatory response in the offspring, activating the vasopressinergic system and reducing thirst after water and sodium depletion, as a result of central osmosensitive mechanism alterations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Die Apoptose spielt eine entscheidende Rolle während der normalen Entwicklung des zentralen Nervensystems. Elektrische Aktivität und die Versorgung mit trophischen Faktoren sind ausschlaggebend für das Überleben von Neuronen. Um zu untersuchen, welche zellulären Prozesse die aktivitätsabhängige Apoptose in organotypischen Schnittkulturen des neugeborenen Neokortex beeinflussen, wurde in der vorliegenden Arbeit immunzytochemisch das Auftreten aktivierter Caspase-3, nach pharmakologischer Beeinflussung von Ionenkanälen und membranständigen Rezeptoren analysiert. Die Unterdrückung neuronaler Aktivität durch den Natriumionenkanalblocker TTX führte zu einem signifikanten Verlust kortikaler Neuronen. Ein ähnlicher Anstieg der Zahl apoptotischer Neurone konnte durch Applikation von Antagonisten ionotroper Glutamatrezeptoren, GABAA-Rezeptoren oder neuronaler Gap Junctions induziert werden. Jedoch konnte bei einigen Antagonisten die apoptosefördernde Wirkung erst nach längerer Einwirkung beobachtet werden. Im Weiteren wurde eine Methode etabliert, mit deren Hilfe eine Echtzeitanalyse der Apoptose kortikaler Neurone unter dem Entzug trophischer Faktoren in Gegenwart unterschiedlicher extrazellulärer Kaliumkonzentrationen ermöglicht wurde. Dazu wurden dissoziierte kortikale Kulturen mit dem pCaspase3-sensor Vektor transfiziert. Das durch dieses Plasmid codierte fluoreszente Protein wird Caspase-3 abhängig gespalten. In der vorliegenden Arbeit konnte gezeigt werden, dass der Caspase3-sensor spezifisch für die Aktivierung der Caspase-3 ist, und dass die Überlebensfähigkeit der transfizierten Neurone durch das Transfektionsprotokoll nicht beeinflusst wird.
Resumo:
Monepantel is the first drug of a new family of anthelmintics, the amino acetonitrile derivatives (AAD), presently used to treat ruminants infected with gastrointestinal nematodes such as Haemonchus contortus. Monepantel shows an excellent tolerability in mammals and is active against multidrug-resistant parasites, indicating that its molecular target is absent or inaccessible in the host and is different from those of the classic anthelmintics. Genetic approaches with mutant nematodes have suggested acetylcholine receptors of the DEG-3 subfamily as the targets of AADs, an enigmatic clade of ligand-gated ion channels that is specific to nematodes and does not occur in mammals. Here we demonstrate direct interaction of monepantel, its major active metabolite monepantel sulfone, and other AADs with potential targets of the DEG-3 subfamily of acetylcholine receptors. H. contortus DEG-3/DES-2 receptors were functionally expressed in Xenopus laevis oocytes and were found to be preferentially activated by choline, to permeate monovalent cations, and to a smaller extent, calcium ions. Although monepantel and monepantel sulfone did not activate the channels by themselves, they substantially enhanced the late currents after activation of the channels with choline, indicating that these AADs are type II positive allosteric modulators of H. contortus DEG-3/DES-2 channels. It is noteworthy that the R-enantiomer of monepantel, which is inactive as an anthelmintic, inhibited the late currents after stimulation of H. contortus DEG-3/DES-2 receptors with choline. In summary, we present the first direct evidence for interaction of AADs with DEG-3-type acetylcholine receptors and discuss these findings in the context of anthelmintic action of AADs.
Deubiquitylating enzyme USP2 counteracts Nedd4-2-mediated downregulation of KCNQ1 potassium channels
Resumo:
KCNQ1 (Kv7.1), together with its KCNE β subunits, plays a pivotal role both in the repolarization of cardiac tissue and in water and salt transport across epithelial membranes. Nedd4/Nedd4-like (neuronal precursor cell-expressed developmentally downregulated 4) ubiquitin-protein ligases interact with the KCNQ1 potassium channel through a PY motif located in the C terminus of KCNQ1. This interaction induces ubiquitylation of KCNQ1, resulting in a reduced surface density of the channel. It was reported recently that the epithelial sodium channel is regulated by the reverse process-deubiquitylation-mediated by USP2 (ubiquitin-specific protease 2).
Resumo:
The cardiac action potential (AP) is initiated by the depolarizing inward sodium current (I(Na)). The pore-forming subunit of the cardiac sodium channel, Na(v)1.5, is the main ion channel that conducts I(Na) in cardiac cells. Despite the large number of studies investigating Na(v)1.5, year after year, we are still learning new aspects regarding its roles in normal cardiac function and in diseased states. The clinical relevance of this channel cannot be understated. The cardiac I(Na) is the target of the class 1 anti-arrhythmic drugs(1), which are nowadays less frequently prescribed because of their well-documented pro-arrhythmic properties(2). In addition, since the first description in 1995 by Keating's group(3) of mutations in patients suffering from congenital long QT syndrome (LQTS) type 3, several hundred genetic variants in SCN5A, the gene coding for Na(v)1.5, have been reported and investigated(4). Interestingly, many of these genetic variants have been found in patients with diverse cardiac manifestations(5) such as congenital LQTS type 3, Brugada syndrome, conduction disorders, and more recently, atrial fibrillation and dilated cardiomyopathy. This impressive list underlines the importance of Na(v)1.5 in cardiac pathologies and raises the question about possible unknown roles and regulatory mechanisms of this channel in cardiac cells. Recent studies have provided experimental evidence that the function of Na(v)1.5, among many other described regulatory mechanisms(6), is also modulated by the mechanical stretch of the membrane in which it is embedded(7), thus suggesting that Na(v)1.5, like other ion channels, is "mechanosensitive". What does this mean? (SELECT FULL TEXT TO CONTINUE).