978 resultados para THOMSON SCATTERING


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters in a liquid has been studied. The first observation of single molecule resonance Raman scattering in a liquid in a probed volume of 10 pL was achieved. Anisotropy of SERRS spectra of single R6G molecule and huge SERRS spectra were observed and compared with that of single molecule fixed in the dried films of sols, which revealed the intricate complex interaction between R6G molecules and the environment in a liquid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced resonance Raman scattering (SERRS) of Rhodamine 6G (R6G) adsorbed on colloidal silver clusters has been studied. Based on the great enhancement of the Raman signal and the quench of the fluorescence, the SERRS spectra of R6G were recorded for the samples of dye colloidal solution with different concentrations. Spectral inhomogeneity behaviours from single molecules in the dried sample films were observed with complementary evidences, such as spectral polarization, spectral diffusion, intensity fluctuation of vibrational lines and even "breathing" of the molecules. Sequential spectra observed from a liquid sample with an average of 0.3 dye molecules in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1 or 2 molecules. Difference between the SERRS spectra of R6G excited by linearly and circularly polarized light were experimentally measured.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Femtosecond explosive processes of argon clusters irradiated by linearly chirped ultraintense laser pulses have been investigated by 90 degrees side spectral scattering. The spectral redshift and blueshift, which correlate with the cluster explosion processes have been measured for negatively and positively chirped driving laser pulses, respectively. The evolution of the heated-cluster polarizability indicates that the core of the cluster is shielded from the laser field in the beginning of the explosion and enhanced scattering occurs after the fast explosion initiates. Evidence of resonant heating is found from the coincidence of enhanced scattering with enhanced absorption measured using the transmitted spectra. Anomalously large-size clusters with very low gas density have been observed in this way and can be used as clean and important cluster targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 45 degrees scattering of a femtosecond (60 fs) intense laser pulse with a 20 nm FWHM (the full width at half maximum) spectrum centered at 790 nm has been studied experimentally while focused in argon clusters at intensity similar to 10(16) W/cm(2). Scattering spectra under different backing pressures and laser-plasma interaction lengths were obtained, which showed spectral blueshifting, beam refraction and complex modulation. These ionization-induced effects reveal the modulation of laser pulses propagating in plasmas and the existing obstacle in laser cluster interaction at high laser intensity and high electron density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stimulated Raman scattering (SRS) of a relativistic laser in plasmas is studied in the framework of the standard equation set of a three-wave process. As far as every wave involved in the process is concerned, its evolution has two aspects: time-dependent amplitude and time-dependent frequency. These two aspects affect each other. Strict analysis and numerical experiment on the full three-wave equation set reveal that a fast growing mode of the instability, which could reach a balance or saturation point during a period far shorter than an estimation based on conventional analysis, could take place in a standard three-wave process without coupling with a fourth wave. This fast growing mode is found to stem from the constraint set by the background density on the amplitude of the driven Langmuir wave. The effect of various parameters on the development of the SRS instability is studied by numerical calculation of the history of the instability in different cases. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emphasis in reactor physics research has shifted toward investigations of fast reactors. The effects of high energy neutron processes have thus become fundamental to our understanding, and one of the most important of these processes is nuclear inelastic scattering. In this research we include inelastic scattering as a primary energy transfer mechanism, and study the resultant neutron energy spectrum in an infinite medium. We assume that the moderator material has a high mass number, so that in a laboratory coordinate system the energy loss of an inelastically scattered neutron may be taken as discrete. It is then consistent to treat elastic scattering with an age theory expansion. Mathematically these assumptions lead to balance equations of the differential-difference type.

The steady state problem is explored first by way of Laplace transformation of the energy variable. We then develop another steady state technique, valid for multiple inelastic level excitations, which depends on the level structure satisfying a physically reasonable constraint. In all cases the solutions we generate are compared with results obtained by modeling inelastic scattering with a separable, evaporative kernel.

The time dependent problem presents some new difficulties. By modeling the elastic scattering cross section in a particular way, we generate solutions to this more interesting problem. We conjecture the method of characteristics may be useful in analyzing time dependent problems with general cross sections. These ideas are briefly explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of s-d exchange scattering of conduction electrons off localized magnetic moments in dilute magnetic alloys is considered employing formal methods of quantum field theoretical scattering. It is shown that such a treatment not only allows for the first time, the inclusion of multiparticle intermediate states in single particle scattering equations but also results in extremely simple and straight forward mathematical analysis. These equations are proved to be exact in the thermodynamic limit. A self-consistent integral equation for electron self energy is derived and approximately solved. The ground state and physical parameters of dilute magnetic alloys are discussed in terms of the theoretical results. Within the approximation of single particle intermediate states our results reduce to earlier versions. The following additional features are found as a consequence of the inclusion of multiparticle intermediate states;

(i) A non analytic binding energy is pre sent for both, antiferromagnetic (J < o) and ferromagnetic (J > o) couplings of the electron plus impurity system.

(ii) The correct behavior of the energy difference of the conduction electron plus impurity system and the free electron system is found which is free of unphysical singularities present in earlier versions of the theories.

(iii) The ground state of the conduction electron plus impurity system is shown to be a many-body condensate state for J < o and J > o, both. However, a distinction is made between the usual terminology of "Singlet" and "Triplet" ground states and nature of our ground state.

(iv) It is shown that a long range ordering, leading to an ordering of the magnetic moments can result from a contact interaction such as the s-d exchange interaction.

(v) The explicit dependence of the excess specific heat of the Kondo systems is obtained and found to be linear in temperatures as T→ o and T ℓnT for 0.3 T_K ≤ T ≤ 0.6 T_K. A rise in (ΔC/T) for temperatures in the region 0 < T ≤ 0.1 T_K is predicted. These results are found to be in excellent agreement with experiments.

(vi) The existence of a critical temperature for Ferromagnetic coupling (J > o) is shown. On the basis of this the apparent contradiction of the simultaneous existence of giant moments and Kondo effect is resolved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electromagnetic scattering and absorption properties of small (kr~1/2) inhomogeneous magnetoplasma columns are calculated via the full set of Maxwell's equations with tensor dielectric constitutive relation. The cold plasma model with collisional damping is used to describe the column. The equations are solved numerically, subject to boundary conditions appropriate to an infinite parallel strip line and to an incident plane wave. The results are similar for several density profiles and exhibit semiquantitative agreement with measurements in waveguide. The absorption is spatially limited, especially for small collision frequency, to a narrow hybrid resonant layer and is essentially zero when there is no hybrid layer in the column. The reflection is also enhanced when the hybrid layer is present, but the value of the reflection coefficient is strongly modified by the presence of the glass tube. The nature of the solutions and an extensive discussion of the conditions under which the cold collisional model should yield valid results is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have observed strong scattering of a probe light by dilute Bose-Einstein condensate (BEC) Rb-87 gas in a tight magnetic trap. The scattering light forms fringes at the image plane. It is found that we can infer the real size of the condensation and the number of the atoms by modelling the imaging system. We present a quantitative calculation of light scattering by the condensed atoms. The calculation shows that the experimental results agree well with the prediction of the generalized diffraction theory, and thus we can directly observe the phase transition of BEC in a tight trap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy spectra of tritons and Helium-3 nuclei from the reactions 3He(d,t)2p, 3H(d,3He)2n, 3He(d,3He)pn, and 3H(d,t)pn were measured between 6° and 20° at a bombarding energy of 10.9 MeV. An upper limit of 5 μb/sr. was obtained for producing a bound di-neutron at 6° and 7.5°. The 3He(d,t)2p and 3H(d,3He)2n data, together with previous measurements at higher energies, have been used to investigate whether one can unambiguously extract information on the two-nucleon system from these three-body final state reactions. As an aid to these theoretical investigations, Born approximation calculations were made employing realistic nucleon-nucleon potentials and an antisymmetrized final state wave function for the five-particle system. These calculations reproduce many of the features observed in the experimental data and indicate that the role of exchange processes cannot be ignored. The results show that previous attempts to obtain information on the neutron-neutron scattering length from the 3H(d,3He)2n reaction may have seriously overestimated the precision that could be attained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equation for the reflection which results when an expanding dielectric slab scatters normally incident plane electromagnetic waves is derived using the invariant imbedding concept. The equation is solved approximately and the character of the solution is investigated. Also, an equation for the radiation transmitted through such a slab is similarly obtained. An alternative formulation of the slab problem is presented which is applicable to the analogous problem in spherical geometry. The form of an equation for the modal reflections from a nonrelativistically expanding sphere is obtained and some salient features of the solution are described. In all cases the material is assumed to be a nondispersive, nonmagnetic dielectric whose rest frame properties are slowly varying.