919 resultados para THERMAL PERFORMANCE
Resumo:
The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant. This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method`s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Coatings based on NiCrAlC intermetallic based alloy were applied on AISI 316L stainless steel substrates using a high velocity oxygen fuel torch. The influence of the spray parameters on friction and abrasive wear resistance were investigated using an instrumented rubber wheel abrasion test, able to measure the friction forces. The corrosion behaviour of the coatings were studied with electrochemical techniques and compared with the corrosion resistance of the substrate material. Specimens prepared using lower O(2)/C(3)H(8) ratios showed smaller porosity values. The abrasion wear rate of the NiCrAlC coatings was much smaller than that described in the literature for bulk as cast materials with similar composition and one order of magnitude higher than bulk cast and heat treated (aged) NiCrAlC alloy. All coatings showed higher corrosion resistance than the AISI 316L substrate in HCl (5%) aqueous solution at 40 degrees C.
Resumo:
Cr3C2-NiCr and WC-Ni coatings are widely used for wear applications at high and room temperature, respectively. Due to the high corrosion resistance of NiCr binder, Cr3C2-NiCr coatings are also used in corrosive environments. The application of WC-Ni coatings in corrosive media is 14 not recommended due to the poor corrosion resistance of the (pure Ni) metallic matrix. It is well known that the addition of Cr to the metallic binder improves the corrosion properties. Erosion-corrosion performance of thermal spray coatings is widely influenced by ceramic phase composition, the size of ceramic particles and also the composition of the metallic binder. In the present work, two types of HVOF thermal spray coatings (Cr3C2-NiCr and WC-Ni) obtained with different spray conditions were studied and compared with conventional micro-cracked hard chromium coatings. Both as-sprayed and polished samples were tested under two erosion-corrosion conditions with different erosivity. Tungsten carbide coatings showed better performance under the most erosive condition, while chromium carbide coatings were superior under less erosive conditions. Some of the tungsten carbide coatings and hard chromium showed similar erosion-corrosion behaviour under more and less erosive conditions. The erosion-corrosion and electrochemical results showed that surface polishing improved the erosion-corrosion properties of the thermally sprayed coatings. The corrosion behaviour of the different coatings has been compared using Electrochemical Impedance Spectroscopy (EIS) and polarization curves. Total material loss due to erosion-corrosion was determined by weight loss measurements. An estimation of the corrosion contribution to the total weight loss was also given. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new strain of the parasitoid Trichogramma pretiosum, was collected in Rio Verde County, State of Goias, Central Brazil, and designated as T. pretiosum RV. This strain was then found to be the most effective one among several different strains of T. pretiosum tested in a parasitoid selection assay. Therefore, its biological characteristics and thermal requirements were studied, aiming at allowing its multiplication under controlled environmental conditions in the laboratory. The parasitoid was reared on eggs of Pseudoplusia includens and Anticarsia gemmatalis at different constant temperatures within an 18-32 degrees C temperature range. The number of annual generations of the parasitoid was also estimated at those temperatures. Results have shown that T. pretiosum RV developmental time, from egg to adult, was influenced by all temperatures tested within the range, varying from 6.8 to 20.3 days and 6.0 to 17.0 days on eggs of P. includens and A. gemmatalis, respectively. The emergence of T. pretiosum RV from eggs of A. gemmatalis was higher than 94% at all temperatures tested. When this variable was evaluated on eggs of P. includens, however, the figures were higher than that within the 18-30 degrees C range (more than 98%), and were also statistically higher than the emergence observed at 32 degrees C (90.2%). The sex ratio of the parasitoids emerged from eggs of A. gemmatalis decreased from 0.55 to 0.29 at 18-32 degrees C, respectively. However, for those emerged from eggs of P. includens, the sex ratio was similar (0.73, 0.72 and 0.71) at 20, 28 and 32 degrees C, respectively. The lower temperature threshold (Tb) and thermal constant (K) were 10.65 degrees C and 151.25 degree-days when the parasitoid was reared on eggs of P. includens; and 11.64 degrees C and 127.60 degree-days when reared on eggs of A. gemmatalis. The number of generations per month increased from 1.45 to 4.23 and from 1.49 to 4.79 when the parasitoid was reared on eggs of P. includens and A. gemmatalis, respectively, following the increases in the temperature. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximate to 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P < 0.05) between 15 and 25 min of exercise. Consequently, heat storage increased (P < 0.003) from 84.0 +/- 8.8 W . m(-2) to 153 +/- 13.1 W . m(-2) (mean +/- s((x) over bar)) after pre-cooling, while total body sweat fell from 1.7 +/- 0.1 1 . h(-1) to 1.2 +/- 0.1 1 . h(-1) (P < 0.05). The distance cycled increased from 14.9 +/- 0.8 to 15.8 +/- 0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.
Resumo:
Despite several studies on adult amphibians, only larvae of the striped marsh frog (Limnodynastes peronii) have been reported to possess the ability to compensate for the effects of cool temperature on locomotor performance by thermal acclimation. In this study, we investigated whether this thermal acclimatory ability is shared by adult L. peronii. We exposed adult L. peronii to either 18 or 30 degrees C for 8 weeks and tested their swimming and jumping performance at six temperatures between 8 and 35 degrees C. Acute changes in temperature affected both maximum swimming and jumping performance, however there was no difference between the two treatment groups in locomotor performance between 8 and 30 degrees C. Maximum swimming velocity of both groups increased from 0.62 +/- 0.02 at 8 degrees C to 1.02 +/- 0.03 m s(-1) at 30 degrees C, while maximum jump distance increased from similar to 20 to > 60 cm over the same temperature range. Although adult L. peronii acclimated to 18 degrees C failed to produce a locomotor response at 35 degrees C, this most likely reflected a change in thermal tolerance limits with acclimation rather than modifications in the locomotor system. As all adult amphibians studied to date are incapable of thermally acclimating locomotor performance, including adults of L. peronii, this acclimatory capacity appears to be absent from the adult stage of development. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
The electrocatalytic activity of Pt and RuO(2) mixed electrodes of different compositions towards methanol oxidation was investigated. The catalysts were prepared by thermal decomposition of polymeric precursors and characterized by energy dispersive X-ray, scanning electronic microscopy, X-ray diffraction and cyclic voltammetry. This preparation method allowed obtaining uniform films with controlled stoichiometry and high surface area. Cyclic voltammetry experiments in the presence of methanol showed that mixed electrodes decreased the potential peak of methanol oxidation by approximately 100 mV (RHE) when compared to the electrode containing only Pt. In addition, voltammetric experiments indicated that the Pt(0.6)Ru(0.4)O(y) electrode led to higher oxidation current densities at lower potentials. Chronoamperometry experiments confirmed the contribution of RuO(2) to the catalytic activity as well as the better performance of the Pt(0.6)Ru(0.4)O(y) electrode composition. Formic acid and CO(2) were identified as being the reaction products formed in the electrolysis performed at 400 and 600 mV. The relative formation of CO(2) was favored in the electrolysis performed at 400 mV (RHE) with the Pt(0.6)Ru(0.4)O(y) electrode. The presence of RuO(2) in Pt-Ru-based electrodes is important for improving the catalytic activity towards methanol electrooxidation. Moreover, the thermal decomposition of polymeric precursors seems to be a promising route for the production of catalysts applicable to DMFC. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
We investigated the burst swimming performance of five species of Antarctic fish at -1.0degreesC. The species studied belonged to the suborder, Notothenioidei, and from the families, Nototheniidae and Bathydraconidae. Swimming performance of the fish was assessed over the initial 300 ms of a startle response using surgically attached miniature accelerometers. Escape responses in all fish consisted of a C-type fast start; consisting of an initial pronounced bending of the body into a C-shape, followed by one or more complete tail-beats and an un-powered glide. We found significant differences in the swimming performance of the five species of fish examined, with average maximum swimming velocities (U-max) ranging from 0.91 to 1.39 m s(-1) and maximum accelerations (A(max)) ranging from 10.6 to 15.6 m s(-2). The cryopelagic species, Pagothenia borchgrevinki, produced the fastest escape response, reaching a U-max and A(max) of 1.39 m s(-1) and 15.6 m s(-2), respectively. We also compared the body shapes of each fish species with their measures of maximum burst performance. The dragonfish, Gymnodraco acuticeps, from the family Bathdraconidae, did not conform to the pattern observed for the other four fish species belonging to the family Nototheniidae. However, we found a negative relationship between buoyancy of the fish species and burst swimming performance. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We examined effects of body size and temperature on swimming performance in juvenile estuarine crocodiles, Crocodylus porosus, over the size range of 30-110 cm total body length. Swimming performance, expressed as maximum sustainable swimming speed, was measured in a temperature- and flow-controlled swimming flume. Absolute sustainable swimming speed increased with body length, but length-specific swimming performance decreased as body length increased. Sustained swimming speed increased with temperature between 15degreesC and 23degreesC, remained constant between 23degrees and 33degreesC, and decreased as temperature rose above 33degreesC. Q(10)-values of swimming speed were 2.60 (+/- 0.091 SE) between 18degreesC and 23degreesC, and there were no differences in Q(10) between crocodiles of different sizes. The broad plateau of thermal independence in swimming speed observed in C. porosus may be of adaptive significance by allowing dispersal of juvenile animals at suboptimal body temperatures.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Temporomandibular disorders (TMD) consist of a group of pathologies that affect the masticatory muscles, temporomandibular joints (TMJ), and/or related structures. String instrumentalists, like many orchestra musicians, can spend hours with head postures that may influence the biomechanical behavior of the TMJ and the muscles of the craniocervicomandibular complex (CCMC). The adoption of abnormal postures acquired during performance by musicians can lead to muscular hyperactivity of the head and cervical muscles, with the possible appearance of TMD. Medical infrared thermography is a non-invasive procedure that can monitor the changes in the superficial tissue related to blood circulation and may serve as a complement to the clinical examination. The objective of this study was to use infrared thermography to evaluate, in one subject, the cutaneous thermal changes adjacent to the CCMC that occur before, during, and after playing a string instrument.
Resumo:
Dissertation to obtain the degree of Doctor of Philosophy in Biomedical Engineering
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.
Resumo:
This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.
Resumo:
Given the need for using more sustainable constructive solutions, an innovative composite material based on a combination of distinct industrial by-products is proposed aiming to reduce waste and energy consumption in the production of construction materials. The raw materials are thermal activated flue-gas desulphurization (FGD) gypsum, which acts as a binder, granulated cork as the aggregate and recycled textile fibres from used tyres intended to reinforce the material. This paper presents the results of the design of the composite mortar mixes, the characterization of the key physical properties (density, porosity and ultrasonic pulse velocity) and the mechanical validation based on uniaxial compressive tests and fracture energy tests. In the experimental campaign, the influence of the percentage of the raw materials in terms of gypsum mass, on the mechanical properties of the composite material was assessed. It was observed that the percentage of granulated cork decreases the compressive strength of the composite material but contributes to the increase in the compressive fracture energy. Besides, the recycled textile fibres play an important role in the mode I fracture process and in the fracture energy of the composite material, resulting in a considerable increase in the mode I fracture energy.