998 resultados para T.cruzi strains infectivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chagas disease, caused by infection with Trypanosoma cruzi, is an important cause of cardiovascular disease. It is increasingly clear that parasite-derived prostaglandins potently modulate host response and disease progression. Here, we report that treatment of experimental T. cruzi infection (Brazil strain) beginning 5 days post infection (dpi) with aspirin (ASA) increased mortality (2-fold) and parasitemia (12-fold). However, there were no differences regarding histopathology or cardiac structure or function. Delayed treatment with ASA (20 mg/kg) beginning 60 dpi did not increase parasitemia or mortality but improved ejection fraction. ASA treatment diminished the profile of parasite-and host-derived circulating prostaglandins in infected mice. To distinguish the effects of ASA on the parasite and host bio-synthetic pathways we infected cyclooxygenase-1 (COX-1) null mice with the Brazil-strain of T. cruzi. Infected COX-1 null mice displayed a reduction in circulating levels of thromboxane (TX)A(2) and prostaglandin (PG)F(2 alpha). Parasitemia was increased in COX-1 null mice compared with parasitemia and mortality in ASA-treated infected mice indicating the effects of ASA on mortality potentially had little to do with inhibition of prostaglandin metabolism. Expression of SOCS-2 was enhanced, and TRAF6 and TNF alpha reduced, in the spleens of infected ASA-treated mice. Ablation of the initial innate response to infection may cause the increased mortality in ASA-treated mice as the host likely succumbs more quickly without the initiation of the ""cytokine storm'' during acute infection. We conclude that ASA, through both COX inhibition and other ""off-target'' effects, modulates the progression of acute and chronic Chagas disease. Thus, eicosanoids present during acute infection may act as immunomodulators aiding the transition to and maintenance of the chronic phase of the disease. A deeper understanding of the mechanism of ASA action may provide clues to the differences between host response in the acute and chronic T. cruzi infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the importance of capybara. Hydrochoerus hydrochaeris, as reservoirs for parasites of zoonotic or veterinary importance. Sera from 63 capybaras, from 6 counties in the state of Sao Paulo, Brazil, were examined for antibodies to Trypanosoma cruel, Leishmania infantum, Encephalitozoon cuniculi. Sarcacystis neurona, and Neospora caninum using an indirect immunofluorescent antibody test. Five (8%) of the 63 capybaras had antibodies to T cruzi epimastigotes. None of the samples from capybara reacted positively with L. infantum promastigotes or with spores of E. cuniculi. Two (3%) of the serum samples were positive for antibodies to S. neurona merozoites, and 2 (3%) of the serum samples were positive for antibodies to N. caninum tachyzoites. A serum sample from 1 capybara was positive for antibodies to both T cruzi and N. caninum. None of the remaining 62 samples reacted with more than 1 parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The cattle tick, Rhipicephalus (Boophilus) microplus, economically impact cattle industry in tropical and subtropical regions of the world. The morphological and genetic differences among R. microplus strains have been documented in the literature, suggesting that biogeographical and ecological separation may have resulted in boophilid ticks from America/Africa and those from Australia being different species. To test the hypothesis of the presence of different boophilid species, herein we performed a series of experiments to characterize the reproductive performance of crosses between R. microplus from Australia, Africa and America and the genetic diversity of strains from Australia, Asia, Africa and America. Results: The results showed that the crosses between Australian and Argentinean or Mozambican strains of boophilid ticks are infertile while crosses between Argentinean and Mozambican strains are fertile. These results showed that tick strains from Africa (Mozambique) and America (Argentina) are the same species, while ticks from Australia may actually represent a separate species. The genetic analysis of mitochondrial 12S and 16S rDNA and microsatellite loci were not conclusive when taken separately, but provided evidence that Australian tick strains were genetically different from Asian, African and American strains. Conclusion: The results reported herein support the hypothesis that at least two different species share the name R. microplus. These species could be redefined as R. microplus (Canestrini, 1887) (for American and African strains) and probably the old R. australis Fuller, 1899 (for Australian strains), which needs to be redescribed. However, experiments with a larger number of tick strains from different geographic locations are needed to corroborate these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenicity of strains of the entomopathogenic fungus Beauveria bassiana and endophytic strains of Beauveria sp against the bovine tick Rhipicephalus (Boophilus) microplus was tested in laboratory bioassays and under field conditions. Suspensions containing 10(5), 10(7) and 10(9) conidia/mL were prepared of each fungal strain for laboratory bioassays. The ticks were maintained at 28 degrees C, 90 +/- 5% relative humidity, and the following variables were evaluated: initial female weight, egg weight, hatching percentage, reproductive efficiency, and percentage control. For tests under field conditions, a Beauveria suspension containing 10(6) conidia/mL was sprayed on tick-infested cows. After 72 h, the ticks were collected to estimate mortality under field conditions. Laboratory bioassays showed a mortality of 20 to 50% of the ticks seven days after inoculation with 10(7) Beauveria conidia/mL. Under field conditions 10(6) Beauveria conidia/mL induced 18-32% mortality. All Beauveria strains were effective in biological control of R. (Boophilus) microplus under laboratory and field test conditions. This is the first demonstration that endophytic fungi can be used for biological control of the cattle tick; this could help reduce environmental contamination by diminishing the need for chemical acaricides. Two endophytic strains were isolated from maize leaves and characterized by molecular sequencing of 5.8S rDNA ITS1 and ITS2 and morphological analyses of conidia. We found that these two endophytic Beauveria isolates, designated B95 and B157, are close to Beauveria amorpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol. Objectives: This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses. Methods: Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 mu g of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 mu g of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE. Results: Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally, immunization with a relatively low BtE dose (10 mu g per subcutaneous injection per mouse) was able to sensitize A/J mice, which were the best responders to high-dose BtE immunization, for the development of allergy-associated immune and lung inflammatory responses. Conclusions: The described short-term model of BtE-induced allergic lung disease is reproducible in different syngeneic mouse strains, and mice of the A/J strain was the most responsive to it. In addition, it was shown that OVA and BtE induce quantitatively different immune responses in A/J mice and that the experimental model can be set up with low amounts of BtE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8(+) T cell-mediated effector functions has not been investigated to date. We addressed this question by measuring the frequencies of IFN-gamma secreting CD8(+) T cells specific for H-2K(b)-restricted immunodominant peptides as well as the in vivo Ag-specific cytotoxic response in infected animals that are deficient either in TLR2, TLR4, TLR9 or MyD88 signaling pathways. Strikingly, we found that T. cruzi-infected Tlr2(-/-), Tlr4(-/-), Tlr9(-/-) or Myd88(-/-) mice generated both specific cytotoxic responses and IFN-gamma secreting CD8(+) T cells at levels comparable to WT mice, although the frequency of IFN-gamma(+)CD4(+) cells was diminished in infected Myd88(-/-) mice. We also analyzed the efficiency of TLR4-driven immune responses against T. cruzi using TLR4-deficient mice on the C57BL genetic background (B6 and B10). Our studies demonstrated that TLR4 signaling is required for optimal production of IFN-gamma, TNF-alpha and nitric oxide (NO) in the spleen of infected animals and, as a consequence, Tlr4(-/-) mice display higher parasitemia levels. Collectively, our results indicate that TLR4, as well as previously shown for TLR2, TLR9 and MyD88, contributes to the innate immune response and, consequently, resistance in the acute phase of infection, although each of these pathways is not individually essential for the generation of class I-restricted responses against T. cruzi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some herbicides are suspected of promoting teratogenic, carcinogenic and mutagenic events. Detection of induced mitotic crossing-over has proven to be an indirect way of testing the carcinogenic properties of suspicious substances, because mitotic crossing-over is involved in the multistep process of carcinogenesis. We examined mitotic crossing-over induced by two commercial herbicides (diuron and trifluralin) in diploid strains of Aspergillus nidulans based on the homozygotization index. Low doses (2.5 mu g/mL) of diuron were sufficient to increase the mean homozygotization index in 2.1 and 11.3 times for UT448//UT196 and Dp II-I//UT196, respectively, whereas the same dose of trifluralin increased this mean only 1.2 (UT448//UT196) and 3.5 (Dp II-I//UT196) times, respectively. The lower homozygotization index value found for trifluralin could be due to its interference with mitotic crossing-over in eukaryotic cells. We concluded that the diploid Dp II-I//UT196 of A. nidulans is more sensitive to organic compounds than UT448//UT196; these compounds cause recombinational events at a greater frequency in the latter diploid. This system holds promise as an initial test for carcino-genicity of organic compounds, including herbicides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intravenous challenge with Trypanosoma cruzi can be used to investigate the process and consequences of blood parasite clearance in experimental Chagas disease. One hour after intravenous challenge of chronically infected mice with 5610 6 trypomastigotes, the liver constituted a major site of parasite accumulation, as revealed by PCR. Intact parasites and/or parasite remnants were visualized at this time point scattered in the liver parenchyma. Moreover, at this time, many of liver-cleared parasites were viable, as estimated by the frequency of positive cultures, which considerably diminished after 48 h. Following clearance, the number of infiltrating cells in the hepatic tissue notably increased: initially (at 24 h) as diffuse infiltrates affecting the whole parenchyma, and at 48 h, in the form of large focal infiltrates in both the parenchyma and perivascular spaces. Phenotypic characterization of liver-infiltrating cells 24 h after challenge revealed an increase in Mac1(+), CD8(+) and CD4(+) cells, followed by natural killer (NK) cells. As evidence that liver-infiltrating CD4(+) and CD8(+) cells were activated, increased frequencies of CD69(+) CD8(+), CD69(+) CD4(+) and CD25(+) CD122(+) CD4(+) cells were observed at 24 and 48 h after challenge, and of CD25(-)CD122(+)CD4(+) cells at 48 h. The major role of CD4(+) cells in liver protection was suggested by data showing a very high frequency of interferon (IFN)-gamma-producing CD4(+) cells 24 h after challenge. In contrast, liver CD8(+) cells produced little IFN-gamma, even though they showed an enhanced potential for secreting this cytokine, as revealed by in vitro T cell receptor (TCR) stimulation. Confirming the effectiveness of the liver immune response in blood parasite control during the chronic phase of infection, no live parasites were detected in this organ 7 days after challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that L-proline has several roles in the biology of trypanosomatids. In Trypanosoma cruzi, the etiological agent of Chagas' disease, this amino acid is involved in energy metabolism, differentiation processes and resistance to osmotic stress. In this study, we analyzed the effects of interfering with L-proline metabolism on the viability and on other aspects of the T. cruzi life cycle using the proline analogue L- thiazolidine-4-carboxylic acid (T4C). The growth of epimastigotes was evaluated using different concentrations of T4C in standard culture conditions and at high temperature or acidic pH. We also evaluated possible interactions of this analogue with stress conditions such as those produced by nutrient starvation and oxidative stress. T4C showed a dose-response effect on epimastigote growth (IC(50) = 0.89+/-0.02 mM at 28 degrees C), and the inhibitory effect of this analogue was synergistic (p<0.05) with temperature (0.54+/-0.01 mM at 37 degrees C). T4C significantly diminished parasite survival (p<0.05) in combination with nutrient starvation and oxidative stress conditions. Pre-incubation of the parasites with L-proline resulted in a protective effect against oxidative stress, but this was not seen in the presence of the drug. Finally, the trypomastigote bursting from infected mammalian cells was evaluated and found to be inhibited by up to 56% when cells were treated with non-toxic concentrations of T4C (between 1 and 10 mM). All these data together suggest that T4C could be an interesting therapeutic drug if combined with others that affect, for example, oxidative stress. The data also support the participation of proline metabolism in the resistance to oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a contribution towards detecting the genetic effects of low doses of genotoxic physical agents, this paper deals with the consequences of low-dose X-rays in the Aspergillus nidulans genome. The irradiation doses studied were those commonly used in dental clinics (1-5 cGy). Even very low doses promoted increased mitotic crossing-over frequencies in diploid strains heterozygous for several genetic markers including the ones involved in DNA repair and recombination mechanisms. Genetic markers of several heterozygous strains were individu`ally analyzed disclosing that some markers were especially sensitive to the treatments. These markers should be chosen as bio-indicators in the homozygotization index assay to better detect the recombinogenic/carcinogenic genomic effects of low-dose X-rays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 angstrom resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 angstrom. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature. Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. For that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied. Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycosylphosphatidylinositol (GPI) anchoring is a common, relevant posttranslational modification of eukaryotic surface proteins. Here, we developed a fast, simple, and highly sensitive (high attomole-low femtomole range) method that uses liquid chromatography-tandem mass spectrometry (LC-MS(n)) for the first large-scale analysis of GPI-anchored molecules (i.e., the GPIome) of a eukaryote, Trypanosoma cruzi, the etiologic agent of Chagas disease. Our genome-wise prediction analysis revealed that approximately 12% of T. cruzi genes possibly encode GPI-anchored proteins. By analyzing the GPIome of T. cruzi insect-dwelling epimastigote stage using LC-MS(n), we identified 90 GPI species, of which 79 were novel. Moreover, we determined that mucins coded by the T. cruzi small mucin-like gene (TcSMUG S) family are the major GPI-anchored proteins expressed on the epimastigote cell surface. TcSMUG S mucin mature sequences are short (56-85 amino acids) and highly O-glycosylated, and contain few proteolytic sites, therefore, less likely susceptible to proteases of the midgut of the insect vector. We propose that our approach could be used for the high throughput GPIomic analysis of other lower and higher eukaryotes. Molecular Systems Biology 7 April 2009; doi:10.1038/msb.2009.13

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16 degrees Brix with a sucrose solution, and batch fermentations were performed at 22 degrees C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Y(p/s)), biomass (Y(x/s)), glycerol (Y(g/s)) and acetic acid (Y(ac/s)), the volumetric productivity of ethanol (Q(p)), the biomass productivity (P(x)), and the fermentation efficiency (E(f)) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the E(f), Y(p/s), Y(g/s), and Y(x/s) parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 mu g/L), CAT-1 (80,317.01 mu g/L), VR-1 (67,573.99 mu g/L) and S. bayanus CBS 1505 (71,660.32 mu g/L). The highest concentrations of ethyl esters were 454.33 mu g/L, 440.33 mu g/L and 438 mu g/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 mu g/L) and higher alcohols (83,996.33 mu g/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters. (c) 2010 Elsevier B.V. All rights reserved.