977 resultados para Suspended catalyst mass transport
Resumo:
The Mediterranean Sea is a semi-enclosed basin connected to the Atlantic Ocean through the narrow and shallow Strait of Gibraltar and further subdivided in two different sub-basins, the Eastern Mediterranean and the Western Mediterranean, connected through the Stait of Sicily. On annual basis, a net heat budget of −7 W/m2, combined with exceeding evaporation over precipation and runoff together with wind stress, is responsible for the antiestuarine character of the zonal thermoaline circulation. The outflow at Gibraltar Strait is mainly composed of Levantine Intermediate Water (LIW) and deep water masses formed in the Western Mediterranean Sea. The aim of this thesis is to validate and quantitatively assess the main routes of water masses composing the ouflow at Gibraltar Strait, using for the first time in the Mediterranean Sea a lagrangian interpretation of the eulerian velocity field produced from an eddy-resolving reanalysis dataset, spanning from 2000 to 2012. A lagrangian model named Ariane is used to map out three-dimensional trajectories in order to describe the pathways of water mass transport from the Strait of Sicily, the Gulf of Lyon and the Northern Tyrrhenian Sea to the Gibraltar Strait. Numerical experiments were carried out by seeding millions of particles in the Strait of Gibraltar and following them backwards in time to track the origins of water masses and transport exchanged between the different sections of the Mediterranean. Finally, the main routes of the intermediate and deep water masses are reconstructed from virtual particles trajectories, which highlight the role of the Western Mediterranean Deep Water (WMDW) as the main contributor to the Gibraltar Strait outflow. For the first time, the quantitative description of the flow of water masses coming from the Eastern Mediterranean towards the Gibraltar Strait is provided and a new route that directly links the Northern Tyrrhenian Sea to Gibralatr Strait has been detected.
Resumo:
Estuarine hydrodynamics is a key factor in the definition of the filtering capacity of an estuary and results from the interaction of the processes that control the inlet morphodynamics and those that are acting in the mixing of the water in the estuary. The hydrodynamics and suspended sediment transport in the Camboriú estuary were assessed by two field campaigns conducted in 1998 that covered both neap and spring tide conditions. The period measured represents the estuarine hydrodynamics and sediment transport prior to the construction of the jetty in 2003 and provides important background information for the Camboriú estuary. Each field campaign covered two complete tidal cycles with hourly measurements of currents, salinity, suspended sediment concentration and water level. Results show that the Camboriú estuary is partially mixed with the vertical structure varying as a function of the tidal range and tidal phase. The dynamic estuarine structure can be balanced between the stabilizing effects generated by the vertical density gradient, which produces buoyancy and stratification flows, and the turbulent effects generated by the vertical velocity gradient that generates vertical mixing. The main sediment source for the water column are the bottom sediments, periodically resuspended by the tidal currents. The advective salt and suspended sediment transport was different between neap and spring tides, being more complex at spring tide. The river discharge term was important under both tidal conditions. The tidal correlation term was also important, being dominant in the suspended sediment transport during the spring tide. The gravitational circulation and Stokes drift played a secondary role in the estuarine transport processes.
Resumo:
Several quantum paramagnets exhibit magnetic-field-induced quantum phase transitions to an anti-ferromagnetic state that exists for H(c1) <= H <= H(c2). For some of these compounds, there is a significant asymmetry between the low-and high-field transitions. We present specific heat and thermal conductivity measurements in NiCl(2)-4SC(NH(2))(2), together with calculations which show that the asymmetry is caused by a strong mass renormalization due to quantum fluctuations for H <= H(c1) that are absent for H >= H(c2). We argue that the enigmatic lack of asymmetry in thermal conductivity is due to a concomitant renormalization of the impurity scattering.
Resumo:
A Lagrangian model of photochemistry and mixing is described (CiTTyCAT, stemming from the Cambridge Tropospheric Trajectory model of Chemistry And Transport), which is suitable for transport and chemistry studies throughout the troposphere. Over the last five years, the model has been developed in parallel at several different institutions and here those developments have been incorporated into one "community" model and documented for the first time. The key photochemical developments include a new scheme for biogenic volatile organic compounds and updated emissions schemes. The key physical development is to evolve composition following an ensemble of trajectories within neighbouring air-masses, including a simple scheme for mixing between them via an evolving "background profile", both within the boundary layer and free troposphere. The model runs along trajectories pre-calculated using winds and temperature from meteorological analyses. In addition, boundary layer height and precipitation rates, output from the analysis model, are interpolated to trajectory points and used as inputs to the mixing and wet deposition schemes. The model is most suitable in regimes when the effects of small-scale turbulent mixing are slow relative to advection by the resolved winds so that coherent air-masses form with distinct composition and strong gradients between them. Such air-masses can persist for many days while stretching, folding and thinning. Lagrangian models offer a useful framework for picking apart the processes of air-mass evolution over inter-continental distances, without being hindered by the numerical diffusion inherent to global Eulerian models. The model, including different box and trajectory modes, is described and some output for each of the modes is presented for evaluation. The model is available for download from a Subversion-controlled repository by contacting the corresponding authors.
Resumo:
Estuarine hydrodynamics is a key factor in the definition of the filtering capacity of an estuary and results from the interaction of the processes that control the inlet morphodynamics and those that are acting in the mixing of the water in the estuary. The hydrodynamics and suspended sediment transport in the Cambori estuary were assessed by two field campaigns conducted in 1998 that covered both neap and spring tide conditions. The period measured represents the estuarine hydrodynamics and sediment transport prior to the construction of the jetty in 2003 and provides important background information for the Cambori estuary. Each field campaign covered two complete tidal cycles with hourly measurements of currents, salinity, suspended sediment concentration and water level. Results show that the Cambori estuary is partially mixed with the vertical structure varying as a function of the tidal range and tidal phase. The dynamic estuarine structure can be balanced between the stabilizing effects generated by the vertical density gradient, which produces buoyancy and stratification flows, and the turbulent effects generated by the vertical velocity gradient that generates vertical mixing. The main sediment source for the water column are the bottom sediments, periodically resuspended by the tidal currents. The advective salt and suspended sediment transport was different between neap and spring tides, being more complex at spring tide. The river discharge term was important under both tidal conditions. The tidal correlation term was also important, being dominant in the suspended sediment transport during the spring tide. The gravitational circulation and Stokes drift played a secondary role in the estuarine transport processes.
Resumo:
In many field or laboratory situations, well-mixed reservoirs like, for instance, injection or detection wells and gas distribution or sampling chambers define boundaries of transport domains. Exchange of solutes or gases across such boundaries can occur through advective or diffusive processes. First we analyzed situations, where the inlet region consists of a well-mixed reservoir, in a systematic way by interpreting them in terms of injection type. Second, we discussed the mass balance errors that seem to appear in case of resident injections. Mixing cells (MC) can be coupled mathematically in different ways to a domain where advective-dispersive transport occurs: by assuming a continuous solute flux at the interface (flux injection, MC-FI), or by assuming a continuous resident concentration (resident injection). In the latter case, the flux leaving the mixing cell can be defined in two ways: either as the value when the interface is approached from the mixing-cell side (MC-RT -), or as the value when it is approached from the column side (MC-RT +). Solutions of these injection types with constant or-in one case-distance-dependent transport parameters were compared to each other as well as to a solution of a two-layer system, where the first layer was characterized by a large dispersion coefficient. These solutions differ mainly at small Peclet numbers. For most real situations, the model for resident injection MC-RI + is considered to be relevant. This type of injection was modeled with a constant or with an exponentially varying dispersion coefficient within the porous medium. A constant dispersion coefficient will be appropriate for gases because of the Eulerian nature of the usually dominating gaseous diffusion coefficient, whereas the asymptotically growing dispersion coefficient will be more appropriate for solutes due to the Lagrangian nature of mechanical dispersion, which evolves only with the fluid flow. Assuming a continuous resident concentration at the interface between a mixing cell and a column, as in case of the MC-RI + model, entails a flux discontinuity. This flux discontinuity arises inherently from the definition of a mixing cell: the mixing process is included in the balance equation, but does not appear in the description of the flux through the mixing cell. There, only convection appears because of the homogeneous concentration within the mixing cell. Thus, the solute flux through a mixing cell in close contact with a transport domain is generally underestimated. This leads to (apparent) mass balance errors, which are often reported for similar situations and erroneously used to judge the validity of such models. Finally, the mixing cell model MC-RI + defines a universal basis regarding the type of solute injection at a boundary. Depending on the mixing cell parameters, it represents, in its limits, flux as well as resident injections. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The scavenging of 231Pa and 230Th was investigated in the Atlantic Sector of the Southern Ocean by combining results from sediment trap and in situ filtration studies. We present the first high-resolution profile of dissolved 230Th and 231Pa in surface waters across the ACC, showing a dramatic southward increase of both radionuclides around the southern ACC Front at 533S. High dissolved 231Pa/230Th ratios combined with low 230Th/231Pa fractionation factors (F) in these surface waters result in extremely high 231Pa94/230Th94 ratios of material collected in the shallow traps. Particulate 231Pa94/230Th94 ratios in a shallow trap near Bouvet Island increase continuously during the productive period in austral summer, and drop back in the low flux period. This behavior, following the Rayleigh fractionation principle, is interpreted to be due to an increase in the dissolved 231Pa/230Th ratio in the euphotic zone resulting from preferential scavenging of 230Th relative to 231Pa, even in opal-dominated regions. In the post-bloom stage, the depleted radionuclide concentrations are replenished by upwelling of Circumpolar Deep Water. The high particulate 231Pa94/230Th94 signal is weakened during downward transport of the bloom particles in the water column by incorporation of deep suspended particles, which have a lower 231Pa94/230Th94 ratio. It is shown that under the special hydrographic conditions in the Southern Ocean scavenging from the upper water column significantly influences the budgets of 230Th and 231Pa in the sediment. Nevertheless, the budgets are still made up primarily by scavenging from the large standing stock of deep suspended particles.
Resumo:
Contrary to the antiferromagnetic and insulating character of bulk NiO, one-dimensional chains of this material can become half metallic due to the lower coordination of their atoms. Here we present ab initio electronic structure and quantum transport calculations of ideal infinitely long NiO chains and of more realistic short ones suspended between Ni electrodes. While infinite chains are insulating, short suspended chains are half-metallic minority-spin conductors that displays very large magnetoresistance and a spin-valve behavior controlled by a single atom.
Resumo:
We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate thefirst and filtering different volumes of water in order to evaluate the second.