984 resultados para SureMath success freshman general chemistry
Resumo:
The late Quaternary palaeoenvironmental history of the southern Windmill Islands, East Antarctica, has been reconstructed using diatom assemblages from two long, well-dated sediment cores taken in two marine bays. The diatom assemblage of the lowest sediment layers suggests a warm climate with mostly open water conditions during the late Pleistocene. During the following glacial, the Windmill Islands were covered by grounded ice preventing any in situ bioproductivity. Following deglaciation, a sapropel with a well-preserved diatom assemblage was deposited from ~10500 cal yr BP. Between ~10500 and ~4000 cal yr BP, total organic carbon (Corg) and total diatom valve concentrations as well as the diatom species composition suggest relatively cool summer temperatures. Hydrological conditions in coastal bays were characterised by combined winter sea-ice and open water conditions. This extensive period of glacial retreat was followed by the Holocene optimum (~4000 to ~1000 cal yr BP), which occurred later in the southern Windmill Islands than in most other Antarctic coastal regions. Diatom assemblages in this period suggest ice-free conditions and meltwater-stratified waters in the marine bays during summer, which is also reflected in high proportions of freshwater diatoms in the sediments. The diatom assemblage in the upper sediments of both cores indicates Neoglacial cooling from ~1000 cal yr BP, which again led to seasonally persistent sea-ice on the bays. The Holocene optimum and cooling trends in the Windmill Islands did not occur contemporaneously with other Antarctic coastal regions, showing that the here presented record reflects partly local environmental conditions rather than global climatic trends.
Resumo:
The impact of global climate change on coral reefs is expected to be most profound at the sea surface, where fertilization and embryonic development of broadcast-spawning corals takes place. We examined the effect of increased temperature and elevated CO2 levels on the in vitro fertilization success and initial embryonic development of broadcast-spawning corals using a single male:female cross of three different species from mid- and high-latitude locations: Lyudao, Taiwan (22° N) and Kochi, Japan (32° N). Eggs were fertilized under ambient conditions (27 °C and 500 µatm CO2) and under conditions predicted for 2100 (IPCC worst case scenario, 31 °C and 1000 µatm CO2). Fertilization success, abnormal development and early developmental success were determined for each sample. Increased temperature had a more profound influence than elevated CO2. In most cases, near-future warming caused a significant drop in early developmental success as a result of decreased fertilization success and/or increased abnormal development. The embryonic development of the male:female cross of A. hyacinthus from the high-latitude location was more sensitive to the increased temperature (+4 °C) than the male:female cross of A. hyacinthus from the mid-latitude location. The response to the elevated CO2 level was small and highly variable, ranging from positive to negative responses. These results suggest that global warming is a more significant and universal stressor than ocean acidification on the early embryonic development of corals from mid- and high-latitude locations.
Resumo:
We analyzed samples from ODP Holes 652A and 654A (Leg 107, Tyrrhenian Sea) for the amount, type, and thermal maturity of organic matter. The sediments encompass clastic and biogenic lithologies, which were deposited on the passive margin east of Sardinia since the late Miocene to the Pleistocene. Marine, hypersaline/evaporitic, lacustrine/riverine, and finally hemipelagic marine conditions with occasional anoxic(?) interludes gave rise to very diverse sedimentary facies. The majority of samples is lean in organic matter (<0.2% TOC). Notable exceptions are Tortonian sediments (TOC average 0.3%), Messinian oil shales from Core 107-652A-64R (up to 11% TOC), Messinian lacustrine/fluvial sediments from Hole 652A (TOC average 0.42%,), and Pleistocene sapropel samples (>2% TOC). The Messinian oil shale in Hole 652A appears to be the only mature hydrocarbon source rock. In general, Pliocene sediments are the leanest and least mature samples. Pleistocene and Pliocene samples derive organic matter from a marine source. In spite of obvious facies differences in the Messinian between the two sites, pyrolysis results are not conclusive in separating hypersaline facies of Site 654 from the fresh water facies of Site 652, because both appear to have received terrestrial organic tissue as the main component of TOC. It is apparent from the distribution of maximum pyrolysis temperatures that heat flow must have been considerably higher at Site 652 on the lower margin in the Messinian. Molecular maturity indices in lipid extracts substantiate the finding that the organic matter in Tortonian and Messinian samples from Hole 654A is immature, while thermal maturation is more advanced in coeval samples from Hole 652A. Analyses of lipid biomarkers showed that original odd-even predominance was preserved in alkanes and alkylcyclohexanes from Messinian samples in Hole 654A, while thermal maturation had removed any odd-even predominance in Hole 652A. Isomerization data of hopanes and steranes support these differences in thermal history for the two sites. Hopanoid distribution further suggests that petroleum impregnation from a deeper, more mature source resulted in the co-occurrence of immature and mature groups of pentacyclic biomarkers. Even though the presence of 4-methylsteranes may imply that dinoflagellates were a major source for organic matter in the oil shale interval of Hole 652, we did not find intact dinoflagellates or related nonskeletal algae during microscopic investigation of the organic matter in the fine laminations. Morphologically, the laminations resemble bacterial mats.
Resumo:
The effect of pH ranging from 8.0 to 6.8 (total scale - pHT) on fertilization, cleavage and larval development until pluteus stage was assessed in an intertidal temperate sea urchin. Gametes were obtained from adults collected in two contrasting tide pools, one showing a significant nocturnal pH decrease (lowest pHT = 7.4) and another where pH was more stable (lowest pHT = 7.8). The highest pHT at which significant effects on fertilization and cleavage were recorded was 7.6. On the contrary, larval development was only affected below pHT 7.4, a value equal or lower than that reported for several subtidal species. This suggests that sea urchins inhabiting stressful intertidal environments produce offspring that may better resist future ocean acidification. Moreover, at pHT 7.4, the fertilization rate of gametes whose progenitors came from the tide pool with higher pH decrease was significantly higher, indicating a possible acclimatization or adaptation of gametes to pH stress.
Resumo:
Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24 °C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.
Resumo:
Community metabolism and air-sea carbon dioxide (CO2) fluxes were investigated in July 1992 on a fringing reef at Moorea (French Polynesia). The benthic community was dominated by macroalgae (85% substratum cover) and comprised of Phaeophyceae Padina tenuis (Bory), Turbinaria ornata (Turner) J. Agardh, and Hydroclathrus clathratus Bory (Howe); Chlorophyta Halimeda incrassata f. ovata J. Agardh (Howe); and Ventricaria ventricosa J. Agardh (Olsen et West), as well as several Rhodophyta (Actinotrichia fragilis Forskál (Børgesen) and several species of encrusting coralline algae). Algal biomass was 171 g dry weight/m**2. Community gross production (Pg), respiration (R), and net calcification (G) were measured in an open-top enclosure. Pg and R were respectively 248 and 240 mmol Co2/m**2/d, and there was a slight net dissolution of CaCO3 (0.8 mmol/m**2/d). This site was a sink for atmospheric CO2 (10 ± 4 mmol CO2/m**2/d), and the analysis of data from the literature suggests that this is a general feature of algal-dominated reefs. Measurement of air-sea CO2 fluxes in open water close to the enclosure demonstrated that changes in small-scale hydrodynamics can lead to misleading conclusions. Net CO2 evasion to the atmosphere was measured on the fringing reef due to changes in the current pattern that drove water from the barrier reef (a C02 source) to the study site.
Resumo:
Stable carbon isotope fractionation (%) of 7 marine phytoplankton species grown in different irradiance cycles was measured under nutrient-replete conditions at a high light intensity in batch cultures. Compared to experiments under continuous light, all species exhibited a significantly higher instantaneous growth rate (pi), defined as the rate of carbon fixation during the photo period, when cultivated at 12:12 h. 16:8 h, or 186 h light:dark (L/D) cycles. Isotopic fractionation by the diatoms Skeletonema costatum, Asterionella glacialis, Thalassiosira punctigera, and Coscinodiscus wailesii (Group I) was 4 to 6% lower in a 16:8 h L/D cycle than under continuous light, which we attribute to differences in pi. In contrast, E, in Phaeodactylum tn'cornutum, Thalassiosira weissflogii, and in the dinoflagellate Scrippsiella trochoidea (Group 11) was largely insensitive to day length-related differences in instantaneous growth rate. Since other studies have reported growth-rate dependent fractionation under N-limited conditions in P. tricornutum, pi-related effects on fractionation apparently depend on the factor controlling growth rate. We suggest that a general relationship between E, and pi/[C02,,,] may not exist. For 1 species of each group we tested the effect of variable CO2 concentration, [COz,,,], on isotopic fractionation. A decrease in [CO2,,,] from ca 26 to 3 pm01 kg-' caused a decrease in E, by less than 3%0 This indicates that variation in h in response to changes in day length has a similar or even greater effect on isotopic fractionation than [COz,,,] m some of the species tested. In both groups E, tended to be higher in smaller species at comparable growth rates. In 24 and 48 h time series the algal cells became progressively enriched in 13C during the day and the first hours of the dark period, followed by l3C depletion in the 2 h before beginning of the following Light period. The daily amplitude of the algal isotopic composition (613C), however, was <1.5%0, which demonstrates that diurnal variation in Fl3C is relatively small.
Resumo:
Ocean acidity has increased by 30% since preindustrial times due to the uptake of anthropogenic CO2 and is projected to rise by another 120% before 2100 if CO2 emissions continue at current rates. Ocean acidification is expected to have wide-ranging impacts on marine life, including reduced growth and net erosion of coral reefs. Our present understanding of the impacts of ocean acidification on marine life, however, relies heavily on results from short-term CO2 perturbation studies. Here we present results from the first long-term CO2 perturbation study on the dominant reef-building cold-water coral Lophelia pertusa and relate them to results from a short-term study to compare the effect of exposure time on the coral's responses. Short-term (one week) high CO2 exposure resulted in a decline of calcification by 26-29% for a pH decrease of 0.1 units and net dissolution of calcium carbonate. In contrast, L. pertusa was capable to acclimate to acidified conditions in long-term (six months) incubations, leading to even slightly enhanced rates of calcification. Net growth is sustained even in waters sub-saturated with respect to aragonite. Acclimation to seawater acidification did not cause a measurable increase in metabolic rates. This is the first evidence of successful acclimation in a coral species to ocean acidification, emphasizing the general need for long-term incubations in ocean acidification research. To conclude on the sensitivity of cold-water coral reefs to future ocean acidification further ecophysiological studies are necessary which should also encompass the role of food availability and rising temperatures.
Resumo:
Predicting the impacts of ocean acidification on coastal ecosystems requires an understanding of the effects on macroalgae and their grazers, as these underpin the ecology of rocky shores. Whilst calcified coralline algae (Rhodophyta) appear to be especially vulnerable to ocean acidification, there is a lack of information concerning calcified brown algae (Phaeophyta), which are not obligate calcifiers but are still important producers of calcium carbonate and organic matter in shallow coastal waters. Here, we compare ecological shifts in subtidal rocky shore systems along CO2 gradients created by volcanic seeps in the Mediterranean and Papua New Guinea, focussing on abundant macroalgae and grazing sea urchins. In both the temperate and tropical systems the abundances of grazing sea urchins declined dramatically along CO2 gradients. Temperate and tropical species of the calcifying macroalgal genus Padina (Dictyoaceae, Phaeophyta) showed reductions in CaCO3 content with CO2 enrichment. In contrast to other studies of calcified macroalgae, however, we observed an increase in the abundance of Padina spp. in acidified conditions. Reduced sea urchin grazing pressure and significant increases in photosynthetic rates may explain the unexpected success of decalcified Padina spp. at elevated levels of CO2. This is the first study to provide a comparison of ecological changes along CO2 gradients between temperate and tropical rocky shores. The similarities we found in the responses of Padina spp. and sea urchin abundance at several vent systems increases confidence in predictions of the ecological impacts of ocean acidification over a large geographical range.
Resumo:
Substantial variations are reported for egg production and hatching rates of copepods exposed to elevated carbon dioxide concentrations (pCO2). One possible explanation, as found in other marine taxa, is that prior parental exposure to elevated pCO2 (and/or decreased pH) affects reproductive performance. Previous studies have adopted two distinct approaches, either (1) expose male and female copepoda to the test pCO2/pH scenarios, or (2) solely expose egg-laying females to the tests. Although the former approach is more realistic, the majority of studies have used the latter approach. Here, we investigated the variation in egg production and hatching success of Acartia tonsa between these two experimental designs, across five different pCO2 concentrations (385-6000 µatm pCO2). In addition, to determine the effect of pCO2 on the hatching success with no prior parental exposure, eggs produced and fertilized under ambient conditions were also exposed to these pCO2 scenarios. Significant variations were found between experimental designs, with approach (1) resulting in higher impacts; here >20% difference was seen in hatching success between experiments at 1000 µatm pCO2 scenarios (2100 year scenario), and >85% at 6000 µatm pCO2. This study highlights the potential to misrepresent the reproductive response of a species to elevated pCO2 dependent on parental exposure.
Resumo:
Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here we tested the impact of long term (up to 16 months) and trans life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1200 µatm, compared to control 400 µatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5 fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2, had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles.
Resumo:
Due to atmospheric accumulation of anthropogenic CO2 the partial pressure of carbon dioxide (pCO2) in surface seawater increases and the pH decreases. This process known as ocean acidification might have severe effects on marine organisms and ecosystems. The present study addresses the effect of ocean acidification on early developmental stages, the most sensitive stages in life history, of the Atlantic herring (Clupea harengus L.). Eggs of the Atlantic herring were fertilized and incubated in artificially acidified seawater (pCO2 1260, 1859, 2626, 2903, 4635 µatm) and a control treatment (pCO2 480 µatm) until the main hatch of herring larvae occurred. The development of the embryos was monitored daily and newly hatched larvae were sampled to analyze their morphometrics, and their condition by measuring the RNA/DNA ratios. Elevated pCO2 neither affected the embryogenesis nor the hatch rate. Furthermore the results showed no linear relationship betweenpCO2 and total length, dry weight, yolk sac area and otolith area of the newly hatched larvae. For pCO2 and RNA/DNA ratio, however, a significant negative linear relationship was found. The RNA concentration at hatching was reduced at higher pCO2 levels, which could lead to a decreased protein biosynthesis. The results indicate that an increased pCO2 can affect the metabolism of herring embryos negatively. Accordingly, further somatic growth of the larvae could be reduced. This can have consequences for the larval fish, since smaller and slow growing individuals have a lower survival potential due to lower feeding success and increased predation mortality. The regulatory mechanisms necessary to compensate for effects of hypercapnia could therefore lead to lower larval survival. Since the recruitment of fish seems to be determined during the early life stages, future research on the factors influencing these stages are of great importance in fisheries science.
Resumo:
Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.
Resumo:
The worldwide effects of ocean acidification (OA) on marine species are a growing concern. In temperate coastal seas, seaweeds are dominant primary producers that create complex habitats and supply energy to higher trophic levels. Studies on OA and macroalgae have focused on calcifying species and adult stages but, critically, they have overlooked the microscopic stages of the reproductive life cycle, which, for other anthropogenic stress e.g. UV-B radiation, are the most susceptible life-history phase. Also, environmental cues and stressors can cause changes in the sex ratio which has implications for the mating system and recruitment success. Here, we report the effects of pH (7.59-8.50) on meiospore germination and sex determination for the giant kelp, Macrocystis pyrifera (Laminariales), in the presence and absence of additional dissolved inorganic carbon (DIC). Lowered pH (7.59-7.60, using HCl-only) caused a significant reduction in germination, while added DIC had the opposite effect, indicating that increased CO2 at lower pH ameliorates physiological stress. This finding also highlights the importance of appropriate manipulation of seawater carbonate chemistry when testing the effects of ocean acidification on photosynthetic organisms. The proportion of male to female gametophytes did not vary significantly between treatments suggesting that pH was not a primary environmental modulator of sex. Relative to the baseline (pH 8.19), gametophytes were 32% larger under moderate OA (pH 7.86) compared to their size (10% increase) under extreme OA (pH 7.61). This study suggests that metabolically-active cells can compensate for the acidification of seawater. This homeostatic function minimises the negative effects of lower pH (high H+ ions) on cellular activity. The 6-9% reduction in germination success under extreme OA suggests that meiospores of M.pyrifera may be resistant to future ocean acidification.
Resumo:
We have measured the stable carbon isotopic composition of bulk organic matter (POC), alkenones, sterols, fatty acids, and phytol in the coccolithophorid Emiliania huxleyi grown in dilute batch cultures over a wide range of CO2 concentrations (1.1-53.5 micromol L-1). The carbon isotope fractionation of POC (POC) varied by ca. 7 per mil and was positively correlated with aqueous CO2 concentration [CO2aq]. While this result confirms general trends observed for the same alga grown in nitrogen-limited chemostat cultures, considerable differences were obtained in absolute values of POC and in the slope of the relationship of POC with growth rate and [CO2aq]. Also, a significantly greater offset was obtained between the delta13C of alkenones and bulk organic matter in this study compared with previous work (5.4, cf. 3.8 per mil). This suggests that the magnitude of the isotope offset may depend on growth conditions. Relative to POC, individual fatty acids were depleted in 13C by 2.3 per mil to 4.1 per mil, phytol was depleted in 13C by 1.9 per mil, and the major sterol 24-methylcholesta-5,22E-dien-3beta-ol was depleted in 13C by 8.5 per mil. This large spread of delta13C values for different lipid classes in the same alga indicates the need for caution in organic geochemical studies when assigning different sources to lipids that might have delta13C values differing by just a few per mil. Increases in [CO2aq] led to dramatic increases in the alkenone contents per cell and as a proportion of organic carbon, but there was no systematic effect on values of U37k- used for reconstructions of paleo sea surface temperature.