956 resultados para Sun: incompressible waves
Resumo:
The annual and interannual variability of idealized, linear, equatorial waves in the lower stratosphere is investigated using the temperature and velocity fields from the ECMWF 15-year re-analysis dataset. Peak Kelvin wave activity occurs during solstice seasons at 100 hPa, during December-February at 70 hPa and in the easterly to westerly quasi-biennial oscillation (QBO) phase transition at 50 hPa. Peak Rossby-gravity wave activity occurs during equinox seasons at 100 hPa, during June-August/September-November at 70 hPa and in the westerly to easterly QBO phase transition at 50 hPa. Although neglect of wind shear means that the results for inertio-gravity waves are likely to be less accurate, they are still qualitatively reasonable and an annual cycle is observed in these waves at 100 hPa and 70 hPa. Inertio-gravity waves with n = 1 are correlated with the QBO at 50 hPa, but the eastward inertio-gravity n = 0 wave is not, due to its very fast vertical group velocity in all background winds. The relative importance of different wave types in driving the QBO at 50 hPa is also discussed. The strongest acceleration appears to be provided by the Kelvin wave while the acceleration provided by the Rossby-gravity wave is negligible. Of the higher-frequency waves, the westward inertio-gravity n = 1 wave appears able to contribute more to the acceleration of the 50 hPa mean zonal wind than the eastward inertio-gravity n = 1 wave.
Resumo:
Wavenumber-frequency spectral analysis and linear wave theory are combined in a novel method to quantitatively estimate equatorial wave activity in the tropical lower stratosphere. The method requires temperature and velocity observations that are regularly spaced in latitude, longitude and time; it is therefore applied to the ECMWF 15-year re-analysis dataset (ERA-15). Signals consistent with idealized Kelvin and Rossby-gravity waves are found at wavenumbers and frequencies in agreement with previous studies. When averaged over 1981-93, the Kelvin wave explains approximately 1 K-2 of temperature variance on the equator at 100 hPa, while the Rossby-gravity wave explains approximately 1 m(2)s(-2) of meridional wind variance. Some inertio-gravity wave and equatorial Rossby wave signals are also found; however the resolution of ERA-15 is not sufficient for the method to provide an accurate climatology of waves with high meridional structure.
Resumo:
Actual energy paths of long, extratropical baroclinic Rossby waves in the ocean are difficult to describe simply because they depend on the meridional-wavenumber-to-zonal-wavenumber ratio tau, a quantity that is difficult to estimate both observationally and theoretically. This paper shows, however, that this dependence is actually weak over any interval in which the zonal phase speed varies approximately linearly with tau, in which case the propagation becomes quasi-nondispersive (QND) and describable at leading order in terms of environmental conditions (i.e., topography and stratification) alone. As an example, the purely topographic case is shown to possess three main kinds of QND ray paths. The first is a topographic regime in which the rays follow approximately the contours f/h(alpha c) = a constant (alpha(c) is a near constant fixed by the strength of the stratification, f is the Coriolis parameter, and h is the ocean depth). The second and third are, respectively, "fast" and "slow" westward regimes little affected by topography and associated with the first and second bottom-pressure-compensated normal modes studied in previous work by Tailleux and McWilliams. Idealized examples show that actual rays can often be reproduced with reasonable accuracy by replacing the actual dispersion relation by its QND approximation. The topographic regime provides an upper bound ( in general a large overestimate) of the maximum latitudinal excursions of actual rays. The method presented in this paper is interesting for enabling an optimal classification of purely azimuthally dispersive wave systems into simpler idealized QND wave regimes, which helps to rationalize previous empirical findings that the ray paths of long Rossby waves in the presence of mean flow and topography often seem to be independent of the wavenumber orientation. Two important side results are to establish that the baroclinic string function regime of Tyler and K se is only valid over a tiny range of the topographic parameter and that long baroclinic Rossby waves propagating over topography do not obey any two-dimensional potential vorticity conservation principle. Given the importance of the latter principle in geophysical fluid dynamics, the lack of it in this case makes the concept of the QND regimes all the more important, for they are probably the only alternative to provide a simple and economical description of general purely azimuthally dispersive wave systems.
Resumo:
An analytical model is developed for the initial stage of surface wave generation at an air-water interface by a turbulent shear flow in either the air or in the water. The model treats the problem of wave growth departing from a flat interface and is relevant for small waves whose forcing is dominated by turbulent pressure fluctuations. The wave growth is predicted using the linearised and inviscid equations of motion, essentially following Phillips [Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417-445], but the pressure fluctuations that generate the waves are treated as unsteady and related to the turbulent velocity field using the rapid-distortion treatment of Durbin [Durbin, P.A., 1978. Rapid distortion theory of turbulent flows. PhD thesis, University of Cambridge]. This model, which assumes a constant mean shear rate F, can be viewed as the simplest representation of an oceanic or atmospheric boundary layer. For turbulent flows in the air and in the water producing pressure fluctuations of similar magnitude, the waves generated by turbulence in the water are found to be considerably steeper than those generated by turbulence in the air. For resonant waves, this is shown to be due to the shorter decorrelation time of turbulent pressure in the air (estimated as proportional to 1/Gamma), because of the higher shear rate existing in the air flow, and due to the smaller length scale of the turbulence in the water. Non-resonant waves generated by turbulence in the water, although being somewhat gentler, are still steeper than resonant waves generated by turbulence in the air. Hence, it is suggested that turbulence in the water may have a more important role than previously thought in the initiation of the surface waves that are subsequently amplified by feedback instability mechanisms.
Resumo:
Results from the first Sun-to-Earth coupled numerical model developed at the Center for Integrated Space Weather Modeling are presented. The model simulates physical processes occurring in space spanning from the corona of the Sun to the Earth's ionosphere, and it represents the first step toward creating a physics-based numerical tool for predicting space weather conditions in the near-Earth environment. Two 6- to 7-d intervals, representing different heliospheric conditions in terms of the three-dimensional configuration of the heliospheric current sheet, are chosen for simulations. These conditions lead to drastically different responses of the simulated magnetosphere-ionosphere system, emphasizing, on the one hand, challenges one encounters in building such forecasting tools, and on the other hand, emphasizing successes that can already be achieved even at this initial stage of Sun-to-Earth modeling.
Resumo:
The effects of the 2003 European heat wave have highlighted the need for society to prepare itself for and cope more effectively with heat waves. This is particularly important in the context of predicted climate change and the likelihood of more frequent extreme climate events; to date, heat as a natural hazard has been largely ignored. In order to develop better coping strategies, this report explores the factors that shape the social impacts of heat waves, and sets out a programme of research to address the considerable knowledge gaps in this area. Heat waves, or periods of anomalous warmth, do not affect everyone; it is the vulnerable individuals or sectors of society who will most experience their effects. The main factors of vulnerability are being elderly, living alone, having a pre-existing disease, being immobile or suffering from mental illness and being economically disadvantaged. The synergistic effects of such factors may prove fatal for some. Heat waves have discernible impacts on society including a rise in mortality, an increased strain on infrastructure (power, water and transport) and a possible rise in social disturbance. Wider impacts may include effects on the retail industry, ecosystem services and tourism. Adapting to more frequent heat waves should include soft engineering options and, where possible, avoid the widespread use of air conditioning which could prove unsustainable in energy terms. Strategies for coping with heat include changing the way in which urban areas are developed or re-developed, and setting up heat watch warning systems based around weather and seasonal climate forecasting and intervention strategies. Although heat waves have discernible effects on society, much remains unknown about their wider social impacts, diffuse health issues and how to manage them.
Resumo:
We report the results of a multi-instrument, multi-technique, coordinated study of the solar eruptive event of 13 May 2005. We discuss the resultant Earth-directed (halo) coronal mass ejection (CME), and the effects on the terrestrial space environment and upper Earth atmosphere. The interplanetary CME (ICME) impacted the Earth’s magnetosphere and caused the most-intense geomagnetic storm of 2005 with a Disturbed Storm Time (Dst) index reaching −263 nT at its peak. The terrestrial environment responded to the storm on a global scale. We have combined observations and measurements from coronal and interplanetary remote-sensing instruments, interplanetary and near-Earth in-situ measurements, remote-sensing observations and in-situ measurements of the terrestrial magnetosphere and ionosphere, along with coronal and heliospheric modelling. These analyses are used to trace the origin, development, propagation, terrestrial impact, and subsequent consequences of this event to obtain the most comprehensive view of a geo-effective solar eruption to date. This particular event is also part of a NASA-sponsored Living With a Star (LWS) study and an on-going US NSF-sponsored Solar, Heliospheric, and INterplanetary Environment (SHINE) community investigation.
Resumo:
The suite of SECCHI optical imaging instruments on the STEREO-A spacecraft is used to track a solar storm, consisting of several coronal mass ejections (CMEs) and other coronal loops, as it propagates from the Sun into the heliosphere during May 2007. The 3-D propagation path of the largest interplanetary CME (ICME) is determined from the observations made by the SECCHI Heliospheric Imager (HI) on STEREO-A (HI-1/2A). Two parts of the CME are tracked through the SECCHI images, a bright loop and a V-shaped feature located at the rear of the event. We show that these two structures could be the result of line-of-sight integration of the light scattered by electrons located on a single flux rope. In addition to being imaged by HI, the CME is observed simultaneously by the plasma and magnetic field experiments on the Venus Express and MESSENGER spacecraft. The imaged loop and V-shaped structure bound, as expected, the flux rope observed in situ. The SECCHI images reveal that the leading loop-like structure propagated faster than the V-shaped structure, and a decrease in in situ CME speed occurred during the passage of the flux rope.We interpret this as the result of the continuous radial expansion of the flux rope as it progressed outward through the interplanetary medium. An expansion speed in the radial direction of ~30 km s-1 is obtained directly from the SECCHI-HI images and is in agreement with the difference in speed of the two structures observed in situ. This paper shows that the flux rope location can be determined from white light images, which could have important space weather applications.
Resumo:
The extent, causes, and physiological significance of the variation in number of follicles growing during ovarian follicular waves in human beings and cattle are unknown. Therefore, the present study examined the variability and repeatability in numbers of follicles 3 mm or greater in diameter during the follicular waves in bovine estrous cycles, and we determined if the variation in number of follicles during waves was associated with alterations in secretion of FSH, estradiol, inhibin, and insulin-like growth factor I (IGF-I). Dairy cattle were subjected to twice-daily ultrasound analysis to count total number of antral follicles 3 mm or greater in diameter throughout 138 different follicular waves. In another study, blood samples were taken at frequent intervals from cows that consistently had low or very high numbers of follicles during waves and were subjected to immunoassays. Results indicate the following: First, despite an approximately sevenfold variation in number of follicles during waves among animals and marked differences in age, stage of lactation, and season of the year, a very highly repeatable (0.95) number of follicles 3 mm or greater in diameter is maintained during the ovulatory and nonovulatory follicular waves of individuals. Second, variation in number of follicles 3 mm or greater in diameter during waves and the inverse association of number of follicles during waves with FSH are not directly explained by alterations in the patterns of secretion of estradiol, inhibin, or IGF-I. Third, ovarian ultrasound analysis can be used reliably by investigators to identify cattle that consistently have low or high numbers of follicles during waves, thus providing a novel experimental model to determine the causes and physiological significance of the high variation in antral follicle number during follicular waves among single-ovulating species, such as cattle or humans.
Resumo:
The high variability of the intensity of suprathermal electron flux in the solar wind is usually ascribed to the high variability of sources on the Sun. Here we demonstrate that a substantial amount of the variability arises from peaks in stream interaction regions, where fast wind runs into slow wind and creates a pressure ridge at the interface. Superposed epoch analysis centered on stream interfaces in 26 interaction regions previously identified in Wind data reveal a twofold increase in 250 eV flux (integrated over pitch angle). Whether the peaks result from the compression there or are solar signatures of the coronal hole boundary, to which interfaces may map, is an open question. Suggestive of the latter, some cases show a displacement between the electron and magnetic field peaks at the interface. Since solar information is transmitted to 1 AU much more quickly by suprathermal electrons compared to convected plasma signatures, the displacement may imply a shift in the coronal hole boundary through transport of open magnetic flux via interchange reconnection. If so, however, the fact that displacements occur in both directions and that the electron and field peaks in the superposed epoch analysis are nearly coincident indicate that any systematic transport expected from differential solar rotation is overwhelmed by a random pattern, possibly owing to transport across a ragged coronal hole boundary.