976 resultados para Sulfur hexafluoride
Resumo:
The mechanism of sulfur dioxide reduction at a platinum microelectrode was investigated by cyclic voltammetry in several room-temperature ionic liquids (RTILs)-[C(2)mim][NTf2], [C(4)mim][BF4], [C(4)mim][NO3], [C(4)mim][PF6], and [C(6)mim][Cl] where [C(2)mim] is 1-ethyl-3-methylimidazolium, [C(4)mim] is 1-butyl-3-methylimidazolium, [C(6)mim] is 1-hexyl-3-methylimidazolium, and [NTf2] is bis(trifluoromethylsufonyl)imide-with special attention paid to [C(4)mim][NO3] because of the well-defined voltammetry, high solubility, and relatively low diffusion coefficient of SO2 obtained in that ionic liquid. A cathodic peak is observed in all RTILs between -2.0 and -1.0 V versus a silver quasi-reference electrode. In [C(4)mim][NO3], the peak appears at -1.0 V, and potential step chronoamperometry was used to determine that SO2 has a very high solubility of 3100 (+/-450) mM and a diffusion coefficient of 5.0 (+/-0.8) x 10(-10) m(2) s(-1) in that ionic liquid. On the reverse wave, up to four anodic peaks are observed at ca. -0.4, -0.3, -0.2, and 0.2 V in [C(4)mim][NO3]. The cathodic wave is assigned to the reduction of SO2 to its radical anion, SO2-center dot. The peaks at -0.4 and -0.2 V are assigned to the oxidation of unsolvated and solvated SO2-center dot, respectively. The peak appearing at 0.2 V is assigned to the oxidation of either S2O42- or S2O4-center dot. The activation energy for the reduction of SO2 in [C(4)mim][NO3] was measured to be 10 (+/-2) kJ mol(-1) using chronoamperometric data at different temperatures. The stabilizing interaction of the solvent with the reduced species SO2-center dot leads to a different mechanism than that observed in conventional aprotic solvents. The high sensitivity of the system to SO2 also suggests that [C(4)mim][NO3] may be a viable solvent in gas sensing applications.
Resumo:
Density functional theory calculations have been used to investigate the chemisorption of H, S, SH, and H2S as well as the hydrogenation reactions S+H and SH+H on a Rh surface with steps, Rh(211), aiming to explain sulfur poisoning effect. In the S hydrogenation from S to H2S, the transition state of the first step S+H-->SH is reached when the S moves to the step-bridge and H is on the off-top site. In the second step, SH+H-->H2S, the transition state is reached when SH moves to the top site and H is close to another top site nearby. Our results show that it is difficult to hydrogenate S and they poison defects such as steps. In order to address why S is poisoning, hydrogenation of C, N, and O on Rh(211) has also been calculated and has been found that the reverse and forward reactions possess similar barriers in contrast to the S hydrogenation. The physical origin of these differences has been analyzed and discussed. (C) 2005 American Institute of Physics.
Resumo:
The sulfur tolerance of a barium-containing NOx storage/reduction trap was investigated using infrared analysis. It was confirmed that barium carbonate could be replaced by barium sulfate by reaction with low concentrations of sulfur dioxide (50 ppm) in the presence of large concentrations of carbon dioxide (10%) at temperatures up to 700 degreesC. These sulfates could at least be partially removed by switching to hydrogen-rich conditions at elevated temperatures. Thermodynamic calculations were used to evaluate the effects of gas composition and temperature on the various reactions of barium sulfate and carbonate under oxidizing and reducing conditions. These calculations clearly showed that if, under a hydrogen-rich atmosphere, carbon dioxide is included as a reactant and barium carbonate as a product then barium sulfate can be removed by reaction with carbon dioxide at a much lower temperature than is possible by decomposition to barium oxide. It was also found that if hydrogen sulfide was included as a product of decomposition of barium sulfate instead of sulfur dioxide then the temperature of reaction could be significantly lowered. Similar calculations were conducted using a selection of other alkaline-earth and alkali metals. In this case calculations were simulated in a gas mixture containing carbon monoxide, hydrogen and carbon dioxide with partial pressures similar to those encountered in real exhausts during switches to rich conditions. The results indicated that there are metals such as lithium and strontium with less stable sulfates than barium, which may also possess sufficient NOx storage capacity to give sulfur-tolerant NOx traps.
Resumo:
Proton pumping respiratory complex I (NADH: ubiquinone oxidoreductase) is a major component of the oxidative phosphorylation system in mitochondria and many bacteria. In mammalian cells it provides 40% of the proton motive force needed to make ATP. Defects in this giant and most complicated membrane-bound enzyme cause numerous human disorders. Yet the mechanism of complex I is still elusive. A group exhibiting redox-linked protonation that is associated with iron-sulfur cluster N2 of complex I has been proposed to act as a central component of the proton pumping machinery. Here we show that a histidine in the 49-kDa subunit that resides near iron-sulfur cluster N2 confers this redox-Bohr effect. Mutating this residue to methionine in complex I from Yarrowia lipolytica resulted in a marked shift of the redox midpoint potential of iron-sulfur cluster N2 to the negative and abolished the redox-Bohr effect. However, the mutation did not significantly affect the catalytic activity of complex I and protons were pumped with an unchanged stoichiometry of 4 H+/2e(-). This finding has significant implications on the discussion about possible proton pumping mechanism for complex I.
Resumo:
Natural Bulgarian clinoptilolite from the south-eastern Rhodopes mountain was modified through treatment with hydrochloric acid with various normality, both single and repeatedly, as well as through a charring of a preliminary obtained NH4-form. The parameters concerning the uptake of the ion-exchangeable cations (Ca2+, Na+ and K+), as well as the uptake of aluminium from the natural material were calculated on the basis of the chemical contents. The highest extent of cations removal was attained in the case of the treatment with NH4Cl solution, while the highest aluminium deficiency was established in the samples treated by hydrochloric acid solutions with increasing concentration. Sulfur dioxide adsorption on the obtained decationised and dealuminised samples was studied according to the frontal-dynamic method. The parameters of the breakthrough curves, namely breakthrough time, saturation time and some of the statistical moments of the curve distribution, were determined. The dynamic adsorption capacities were also specified. Comparing the momentum values it was established that as a result of the natural zeolite treatment with NH4Cl and with low concentrated acid, the diffusion resistance decreases because of the dominant exchange of the presenting exchangeable cations in the samples with the smaller size protons and because of enlargement of the pores opening. Intensified dealuminisation was observed when more concentrated acid solutions are used. The capacity is enhanced, probably due to an increase in the total pore volume.
Resumo:
Ionic liquids are shown to be good solvents for elemental sulfur, selenium, phosphorus and tellurium, and can be designed to maximise the solubility of these elements. The presence of the [S-3](center dot-) radical anion in diluted solutions of sulfur in some ionic liquids has been confirmed, and is the origin of their intense blue colour (cf. lapis lazuli).
Resumo:
The title compound is readily prepared from 5'-O-monomethoxytrityl-3'-thiothymidine (5); cleavage of the P–S bond can be accomplished by mild oxidative hydrolysis.
Resumo:
The electrochemistry of elemental sulfur (S-8) and the polysulfides Na2S4 and Na2S6 has been studied for the first time in nonchloroaluminate ionic liquids. The cyclic voltammetry of S-8 in the ionic liquids is different to the behavior reported in some organic solvents, with two reductions and one oxidation peak observed. Supported by in situ UV-vis spectro-electrochemical experiments, the main reduction products of S-8 in [C(4)mim][DCA] ([C(4)mim] = 1-butyl-3-methylimidazolium; DCA = dicyanamide) have been identified as s(6)(2-) and S-4(2-), and plausible pathways for the formation of these species are proposed. Dissociation and/or disproportionation of the polyanions S-6(2-) and S-4(2-) appears to be slow in the ionic liquid, with only small amounts of the blue radical species S3(center dot-) formed in the solutions at r.t., in contrast with that observed in most molecular solvents.
Resumo:
Thick (4 mu m) films of anatase titania are used to photocatalyze the removal of deposited films of amorphous sulfur, similar to 2.8 mu m, thick and under moderate illumination conditions (I = 5.6 mW cm(-2)) on the open bench the process is complete within similar to 8 or 18 h using UVC or UVA light, respectively. Using UVA light, 96% of the product of the photocatalytic removal of the film of sulfur is sulfur dioxide, SO2. The photonic efficiency of this process is similar to 0.16%, which is much higher (> 15 times) than that of the removal of soot by the same films, under similar experimental conditions. In contrast to the open bench work, in a closed system the photocatalytic activity of a titania film toward the removal of sulfur decreased with repeated use, due to the accumulation of sulfuric acid on its surface generated by the subsequent photocatalytic oxidation of the initial product, SO2. The H2SO4-inactivated films are regenerated by soaking in water. The problems of using titania films to remove SO2 from a gaseous environment are discussed briefly.
Resumo:
The deactivation of a silver-based hydrocarbon selective catalytic reduction catalyst by SOx and the subsequent regeneration under various operating conditions has been investigated. Using a sulfur trap based on a silica-supported catalyst it was found that, for a Ag/SiO2 + Ag/Al2O3 combination, the negative effect of SO2 on the n-octane-SCR reaction can be eliminated under normal operating conditions. The trap can be regenerated by hydrogen at low temperatures or at higher temperatures using a hydrocarbon reductant.
Resumo:
Heterocyclic chalcogenones were prepd. by reaction of S, Se, or Te with ionic liqs. or salts [I; Ra = (substituted) alkyl, cycloalkyl, aryl, aralkyl, alkylaryl; Q = (unsatd.) (substituted) linker to form a ring of 5-10 members; X- = anion selected from conjugate bases of HX having a pKa value of >2.5]. Thus, 1-butyl-3-methylimidazolium acetate was heated with stoichiometric S at 75° for 48 h to give 1-butyl-3-methylimidazole-2-thione. [on SciFinder(R)]