955 resultados para Submerged-arc-welding
Resumo:
The formation and growth of continental crust in the Archean have been evaluated through models of subduction-accretion and mantle plume. The Nilgiri Block in southern India exposes exhumed Neoarchean lower crust, uplifted to heights of 2500 m above sea level along the north western margin of the Peninsula. Major lithologies in this block include charnockite with or without garnet, anorthosite-gabbro suite, pyroxenite, amphibolite and hornblende-biotite gneiss (TTG). All these rock types are closely associated as an arc magmatic suite, with diffuse boundaries and coeval nature. The charnockite and hornblende-biotite gneisses (TTG) show SiO2 content varying from 64 to 73 wt.%. The hornblende-biotite gneisses (TTG) are high-Al type with Al2O3 >15 wt.% whereas the charnockites show Al2O3 <15 wt.%. The composition of charnockite is mainly magnesian and calcic to calc-alkaline. The mafic-ultramafic rocks show composition close to that of tholeiitic series. The low values of K(2)o (<3 wt.%), (K/Rb)/K2O (<500), Zr/Ti, and trace element ratios like (La/Yb)n/(Sr/Y), (Y/Nb), (Y + Nb)/Rb, (Y+Ta)/Rb, Yb/Ta indicate a volcanic arc signature for these rocks. The geochemical signature is consistent with arc magmatic rocks generated through oceanic plate subduction. The primitive mantle normalized trace element patterns of these rocks display enrichment in large ion lithophile elements (LILE) and comparable high field strength elements (HFSE) in charnockite and hornblende-biotite gneisses (TTG) consistent with subduction-related origin. Primitive mantle normalized REE pattern displays an enrichment in LREE in the chamockite and hornblende-biotite gneisses (TTG) as compared to a flat pattern for the mafic rocks. The chondrite normalized REE patterns of zircons of all the rock types reveal cores with high HREE formed at ca. 2700 Ma and rims with low HREE formed at 2500-2450 Ma. Log-transformed La/Th-Nb/Th-Sm/Th-Yb/Th discrimination diagram for the mafic and ultramafic rocks from Nilgiri displays a transition from mid-oceanic ridge basalt (MORB) to island arc basalt (IAB) suggesting a MORB source. The U-Pb zircon data from the charnockites, mafic granulites and hornblende-biotite gneisses (TTG) presented in our study show that the magma generation during subduction and accretion events in this block occurred at 2700-2500 Ma. Together with the recent report on Neoarchean supra-subduction zone ophiolite suite at its southern margin, the Nilgiri Block provides one of the best examples for continental growth through vertical stacking and lateral accretion in a subduction environment during the Neoarchean. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper highlights the role of globular microstructure on the weldability of semi-solid processed aluminum alloys via high temperature flow behavior. The investigation was carried out on the joining of thixocast A356 aluminum alloy components by friction welding. A thermomechanical model was developed to predict the temperature and stress distributions, as well as to identify the suitable and safe range of parameters. Good comparisons between numerical and experimental results were observed. In addition, metallographic examinations and hardness and tensile tests of the welded samples were carried out. It was found that the tensile strength of the joint is higher than the tensile strength of the parent material for the optimum set of parameters. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The boxicity (resp. cubicity) of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R-k. Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V, such that the intersection of their edge sets is E. The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O(n(1-epsilon))-factor for any epsilon > 0 in polynomial time, unless NP = ZPP. For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n(1-epsilon)-factor approximation algorithm for computing boxicity in polynomial time, for any epsilon > 0. In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Omega(n). We give a (2 + 1/k) -factor (resp. (2 + log n]/k)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k >= 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn + n(2)) in both these cases, and in O(mn + kn(2)) = O(n(3)) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A sound weld was obtained between 2024-T3 Al alloy and AZ31B-O Mg alloy dissimilar metal plates of 5 mm thickness, at a rotational speed of 300 rev min(-1) and at a welding speed of 50 mm min(-1). One of the parameter studied was, the effect of interface offset variation, on the quality and properties of the welded samples and on the thickness of intermetallic layer formed in the welded samples. The intermetallic layer at the midst of the weld volume contains intermetallic compounds Al12Mg17 and Al3Mg2. Highest tensile strength of 106.86 MPa, corresponding tensile joint efficiency of 44.52% and corresponding elongation 1.33% were obtained for the tensile sample, with interface offset of 0.66 mm from zero interface offset in retreating side and with approximate least intermetallic thickness of 1.2 mu m. Dissimilar friction stir welded joint samples had failed completely in brittle fracture mode; the position of tensile fracture was located at the midst of intermetallic layer, which had maximum hardness and minimum ductility. The nano hardness values fluctuate in the weld nugget owing to dynamic recrystallization of alloy materials and formation of brittle intermetallic compounds of alloy materials in the weld nugget; maximum hardness of 10.74 GPa occurred for the sample with least intermetallic thickness of 1.2 mu m. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The Nilgiri Block, southern India is an exhumed lower crust formed through arc magmatic processes in the Neoarchean. The main lithologies in this terrane include charnockites, gneisses, volcanic tuff, metasediments, banded iron formation and mafic-ultramafic bodies. Mafic-ultramafic rocks are present towards the northern and central part of the Nilgiri Block. We examine the evolution of these mafic granulites/metagabbros by phase diagram modeling and U-Pb sensitive high resolution ion microprobe (SHRIMP) dating. They consist of a garnet-clinopyroxene-plagioclase-hornblende-ilmenite +/- orthopyroxene +/- rutile assemblage. Garnet and clinopyroxene form major constituents with labradorite and orthopyroxene as the main mineral inclusions. Labradorite, identified using Raman analysis, shows typical peaks at 508 cm(-1), 479 cm(-1), 287 cm(-1) and 177 cm(-1). It is stable along with orthopyroxene towards the low-pressure high-temperature region of the granulite fades (M1 stage). Subsequently, orthopyroxene reacted with plagioclase to form the peak garnet + clinopyroxene + rutile assemblage (M2 stage). The final stage is represented by amphibolite facies-hornblende and plagioclase-rim around the garnet-clinopyroxene assemblage (M3 stage). Phase diagram modeling shows that these mafic granulites followed an anticlockwise P-T-t path during their evolution. The initial high-temperature metamorphism (M1 stage) was at 850-900 degrees C and similar to 9 kbar followed by high-pressure granulite fades metamorphism (M2 stage) at 850-900 degrees C and 14-15 kbar. U-Pb isotope studies of zircons using SHRIMP revealed late Neoarchean to early paleoproterozoic ages of crystallization and metamorphism respectively. The age data shows that these mafic granulites have undergone arc magmatism at ca. 25392 +/- 3 Ma and high-temperature, high-pressure metamorphism at ca. 2458.9 +/- 8.6 Ma. Thus our results suggests a late Neoarchean arc magmatism followed by early paleoproterozoic high-temperature, high-pressure granulite facies metamorphism due to the crustal thickening and suturing of the Nilgiri Block onto the Dharwar Craton. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We present results for electron beam welding of a binary Ti/Ni dissimilar metal couple. The difference in physical properties of the base metals and metallurgical features (thermodynamics and kinetics) of the system influence both macroscopic transport and microstructure development in the weld. Microstructures near the fusion interfaces are markedly different from those inside the weld region. At the Ti side, Ti2Ni dendrites are observed to grow toward the fusion interface, while in the Ni side, layered growth of gamma-Ni, Ni3Ti, and Ni3Ti + NiTi eutectic is observed. Different morphologies of the latter eutectic constitute the predominant microstructure inside the weld metal region. These results are compared and contrasted with those from laser welding of the same binary couple, and a scheme of solidification is proposed to explain the observations. This highlights notable departures from welding of similar and other dissimilar metals such as a significant asymmetry in heat transport that governs progress of solidification from each side of the couple, and a lack of unique liquidus isotherm characterizing the liquid-solid front.
Resumo:
Arc voltage fluctuations in a direct current (DC) non-transferred arc plasma generator are experimentally studied, in generating a jet in the laminar, transitional and turbulent regimes. The study is with a view toward elucidating the mechanism of the fluctuations and their relationship with the generating parameters, arc root movement and flow regimes. Results indicate that the existence of a 300 Hz alternating current (AC) component in the power supply ripples does not cause the transition of the laminar plasma jet into a turbulent state. There exists a high frequency fluctuation at 4 kHz in the turbulent jet regime. It may be related to the rapid movement of the anode attachment point of the arc.
Resumo:
The arc-root attachment on the anode surface of a dc non-transferred arc plasma torch has been successfully observed using a novel approach. A specially designed copper mirror with a boron nitride film coated on its surface central-region is employed to avoid the effect of intensive light emitted from the arc column upon the observation of weakly luminous arc root. It is found that the arc-root attachment is diffusive on the anode surface of the argon plasma torch, while constricted arc roots often occur when hydrogen or nitrogen is added into argon as the plasma-forming gas.
Resumo:
A gliding arc discharge plasma and its characteristics are described. Analysis on the production principle of the plasma is presented. Some experimental results about two novel types of the gliding arc plasma generator were obtained. These types of gliding arc plasma are potentially used in chemical industry and environment engineering.
Resumo:
Despite intensive research on optimizing the methods for depositing carbon encapsulated ferromagnetic nanoparticles, the effect of the carbon cages remains unclear. In the present work, the effect of the graphitic cages on the magnetization of the ferromagnetic core has been studied by comparing the magnetic properties of pure and carbon encapsulated Ni particles of the same size. The carbon encapsulated Ni particles were formed using an electric arc discharge in de-ionized water between a solid graphite cathode and an anode consisting of Ni and C in a mass ratio of Ni:C = 7:3. This method is shown to have potential for low cost production of carbon encapsulated Ni nanoparticle samples with narrow particle size distributions. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis were used to study the crystallography, morphology, and size distribution of the encapsulated and pure Ni nanoparticle samples. The availability of encapsulated particles with various sizes allowed us to elucidate the role of carbon cages in size-dependent properties. Our data suggest that even though encapsulation is beneficial for protection against hostile chemical environments and for avoiding low proximity phenomena, it suppresses the saturation magnetization of the Ni cores.
Resumo:
本文研究了滑动弧放电过程中电参数的变化,并对滑动弧等离子体中的非平衡度和各参数之间关系进行了讨论。应用了双通道电弧模型 ,对电弧在气流作用下的运动规律进行了数值模拟。模拟的结果有助于分析滑动弧非平衡等离子体的产生机理。 The elelctric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharge.Using two-channel model, the rules of arc moving due to effect of the airflow is simulated.The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma.
Resumo:
The fabrication of carbon nanomaterials usually calls for expensive vacuum systems to generate plasmas and yields are disappointingly low. Here we describe a simple method for producing high-quality spherical carbon nano-'onions' in large quantities without the use of vacuum equipment. The nanoparticles, which have C60 cores surrounded by onion-like nested particles, are generated by an arc discharge between two graphite electrodes submerged in water. This technique is economical and environmentally benign, and produces uncontaminated nanoparticles which may be useful in many applications.