975 resultados para Strontium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of determinations of 90Sr and tritium polluting surface water in different parts of the North Pacific are presented. The T/90Sr ratio lies within 90-600 over the referred water area and attains 2000 near the Columbia River mouth. Tritium concentration in sea water has been noted to be affected by river runoff and terrigenous sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the Pb isotope data for the Leg 92 metalliferous sediments (carbonate-free fraction) form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts (MORB) toward the field for Mn nodules. These arrays are directed closely to the average values of Mn nodules, the composition of which reflects the Pb isotope composition of seawater (Reynolds and Dasch, 1971). Since the Leg 92 samples are almost devoid of continentally derived detritus, it can be inferred that the more radiogenic end-member is seawater. The less radiogenic end-member lies in the very middle of the MORB field, and hence can be considered to reflect the Pb isotope composition of typical ocean-ridge basalt. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb from the two different end-member sources. According to this model, eight samples from Sites 599 to 601 contain 50 to 100% basaltic Pb. Five of these samples have compositions that are identical within the uncertainty of the analyses. We use the average of these five values to define our unradiogenic end-member in the linear mixing model. The ratios used for this average are 206Pb/204Pb = 18.425 ± 0.010; 207Pb/204Pb = 15.495 ± 0.018; 208Pb/204Pb = 37.879 ± 0.068. These values should approximate the average Pb isotope composition of discharging hydrothermal solutions, and therefore also that of the basaltic crust, over the period of time represented by these samples ( 4 m.y., from 4 to 8 Ma). Sr isotope ratios show a significant range of values, from 0.7082 to 0.7091. The lower ratios are well outside the value of 0.70910 ± 6 for modern-day seawater (Burke et al., 1982). However, most values correspond very closely to the curve of 87Sr/86Sr versus age for seawater, with older samples having progressively lower 87Sr/86Sr ratios. The simplest explanation for this progressive reduction is that recrystallization of the abundant biogenic carbonate in the sediments released older seawater Sr which was incorporated into ferromanganiferous phases during diagenesis. Leg 92 metalliferous sediments have total rare earth element (REE) contents that range on a carbonate-free basis from 131 to 301 ppm, with a clustering between 167 and 222 ppm. The patterns have strong negative Ce anomalies. Samples from Sites 599 to 601 display a slight but distinct enrichment in the heavy REE relative to the light REE, whereas those from Sites 597 to 598 show almost no heavy REE enrichment. The former patterns (those for Sites 599 to 601) are interpreted as indicating moderate diagenetic alteration of metalliferous sediments originating at the EPR axis; the latter reflect more complete diagenetic modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium, magnesium, oxygen, and carbon isotope profiles of the carbonate fraction of Hole 600C sediments support the lithologic and petrographic observations of extensive CaCO3 dissolution and recrystallization in the Pliocene basal section. Convective fluid flow through the sediments during the first 1 to 1.5 m.y. of the sedimentary history of these sediments may explain these observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A curve describing the variation of the strontium isotopic composition of seawater for the late Neogene (9 to 2 Ma) was constructed from 87Sr/86Sr analyses of marine carbonate in five Deep Sea Drilling Project (DSDP) sites: 502, 519, 588, 590, and 593. The strontium isotopic composition of the oceans increased between 9 and 2 Ma with several changes in slope. From 9 to 5.5 Ma, 87Sr/86Sr values were nearly constant at ~0.708925. Between 5.5 and 4.5 Ma, 87Sr/86Sr ratios increased monotonically at a rate of not, vert, similar 1 * 10**-4 per million years. The steep slope during this interval provides the potential for high resolution strontium isotope stratigraphy across the Miocene/Pliocene boundary. The rate of change of 87Sr/86Sr decreases to near zero again during the interval 4.5-2.5 Ma, and ratios average 0.709025. The relatively rapid increase of 87Sr/86Sr between 5.5 and 4.5 Ma must be related to changes in the flux or average 87Sr/86Sr ratios of the major inputs of Sr to the oceans. Quantitative modelling of these inputs suggests that the increase was most probably caused by an increase in the dissolved riverine flux of strontium to the oceans, an increase in the average 87Sr/86Sr composition of river water, or some combination of these parameters. Modelling of this period as a transient-state requires a pulse-like increase in the input of 87Sr to the oceans between 5.5 and 4.5 Ma. Alternatively, the 5.5-4.5 Ma period can be modelled as a simple transition from one steady-state to another if the oceanic residence time of strontium was eight times less than the currently accepted value of 4 Ma. During the time interval of steep 87Sr/86Sr increase, other geochemical and sedimentologic changes also occur including an increase in sediment accumulation rates, a drop in the calcite compensation depth (CCD), and a decrease in the delta13C of dissolved bicarbonate (i.e., "carbon shift"). The simplest mechanism to explain 87Sr/86Sr variation and these related geochemical changes is to invoke an increase in the dissolved chemical fluxes carried by rivers to the oceans. This, in turn, implies increased chemical denudation rates of the continents and shelves during the late Neogene. The increase in chemical weathering rates is attributed to increased exposure of the continents by eustatic regression, intensified glacial/interglacial cycles, and accelerated rates of global tectonism beginning at 5.5 Ma during the latest Miocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 87Sr/86Sr isotope curve of the middle Eocene to Oligocene was produced from analysis of foraminifera in Ocean Drilling Program Hole 689B, Maud Rise, near the coast of Antarctica. Sediments from the hole are well preserved with no evidence of diagenetic alteration. The sequence is nearly complete from 46.3 to 24.8 Ma, with an average sampling interval of 166 kyr. Excellent magnetostratigraphy in Hole 689B allows calibration to the geomagnetic polarity time scale of Cande and Kent (1992). Marine strontium isotopic ratios were nearly stable from 46.3 to 35.5 Ma, averaging near 0.70773, after which they began to increase. A slow increase began after 40.4 Ma, rising at a rate of only about 8*10**-6/m.y. from base values of 0.707707. From 35.5 Ma to 24.8 Ma the average slope increased to 40*10**-6/m.y. The slope remained constant at least until 24.8 Ma, when the record becomes discontinuous owing to unconformities. We evaluate several possible controls on the marine strontium isotope curve that could have led to the observed growth in 87Sr/86Sr ratios near the Eocene/Oligocene boundary. Three mechanisms are considered, including the onset of Antarctic glaciation, increased mountain building in the Himalayan-Tibetan region, and decreased hydrothermal activity. None of the mechanisms alone seems to adequately explain the increased 87Sr/86Sr ratios during the Oligocene. Glaciation as a weathering agent was too episodic and probably began too late to explain the upturn in marine 87Sr/86Sr ratios. There is evidence that uplift in the Himalayan-Tibetan region began in the Miocene, much too late to control Oligocene strontium isotope ratios. Lastly, hydrothermal flux changes since the Eocene were apparently not great enough alone to account for the rise in marine 87Sr/86Sr ratios. We suggest that a combination of causes, such as decreased hydrothermal activity perhaps followed by increased glaciation and mountain building, might best explain the growth of the marine 87Sr/86Sr curve during the Oligocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%). The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by a-recoil injection of 234Th. The fraction of 238U decays that result in a-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 0.0000004 to 0.000002 1/yr. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 1000 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials. The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (R_d) of soils and deep-sea sediments can be approximately described by the expression R_d ~ 0.1 1/age for ages spanning 1000 to 500,000,000 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strontium-isotope dating method, based on the strontium-isotope seawater curve, was used to date stratigraphic events recognized in carbonate sediments drilled during Leg 133 on the Queensland and Marion plateaus. The strontium isotope ages of these events are used to correlate paleoceanographic changes, delineated from oxygen isotope signals, and paleoenvironmental or facies changes recorded in the lithostratigraphy. Results indicate that a strong connection exists between prevailing paleoenvironmental conditions and the developmental style of a carbonate platform. Also, the strontium-isotope ages of discrete dolomite intervals within the sequences were determined, indicating that multiple dolomitization events took place and that a hydrodynamically driven process may be currently active within the modern carbonate platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DSDP Hole 504B was drilled into 6 Ma crust, about 200 km south of the Costa Rica Rift, Galapagos Spreading Center, penetrating 1.35 km into a section that can be divided into four zones-Zone I: oxic submarine weathering; Zone II: anoxic alteration; Zones III and IV: hydrothermal alteration to greenschist facies. In Zone III there is intense veining of pillow basalts. Zone IV consists of altered sheeted dikes. Isotopic geochemical signatures in relation to the alteration zones are recorded in Hole 504B, as follows: Zone Depth(m) Average87Sr/86Sr Average delta18O (?) Average deltaD (?) I 275-550 0.7032 7.3 -63 II 550-890 0.7029 6.5 -45 III 890-1050 0.7035 5.6 -31 IV 1050-1350 0.7032 5.5 -36 Alteration temperatures are as low as 10°C in Zones I and II based on oxygen isotope fractionation. Strontium isotopic data indicate that a circulation of seawater is much more restricted in Zone II than in Zone I. Fluid inclusion measurements of vein quartz indicate the alteration temperature was mainly 300 +/- 20°C in Zones III and IV, which is consistent with secondary mineral assemblages. The strontium, oxygen, and hydrogen isotopic compositions of hydrothermal fluids which were responsible for the greenschist facies alteration in Zones III and IV are estimated to be 0.7037, 2?, and 3?, respectively. Strontium and oxygen isotope data indicate that completely altered portions of greenstones and vein minerals were in equilibrium with modified seawater under low water/rock ratios (in weight) of about 1.6. This value is close to that of the end-member hydrothermal fluids issuing at 21°N EPR. Basement rocks are not completely hydrothermally altered. About 32% of the greenstones in Zones III and IV have escaped alteration. Thus 1 g of fresh basalt including the 32% unaltered portion are required in order to make 1 g of end-member solution from fresh seawater in water-rock reactions.