993 resultados para Strong light
Resumo:
Fire safety design of building structures has received greater attention in recent times due to continuing loss of properties and lives during fires. However, fire performance of light gauge cold-formed steel structures is not well understood despite its increased usage in buildings. Cold-formed steel compression members are susceptible to various buckling modes such as local and distortional buckling and their ultimate strength behaviour is governed by these buckling modes. Therefore a research project based on experimental and numerical studies was undertaken to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. Lipped channel sections with and without additional lips were selected with three thicknesses of 0.6, 0.8, and 0.95 mm and both low and high strength steels (G250 and G550 steels). More than 150 compression tests were undertaken first at ambient and elevated temperatures. Finite element models of the tested compression members were then developed by including the degradation of mechanical properties with increasing temperatures. Comparison of finite element analysis and experimental results showed that the developed finite element models were capable of simulating the distortional buckling and strength behaviour at ambient and elevated temperatures up to 800 °C. The validated model was used to determine the effects of mechanical properties, geometric imperfections and residual stresses on the distortional buckling behaviour and strength of cold-formed steel columns. This paper presents the details of the numerical study and the results. It demonstrated the importance of using accurate mechanical properties at elevated temperatures in order to obtain reliable strength characteristics of cold-formed steel columns under fire conditions.
Resumo:
In Australia, young children who lack decision-making capacity can have regenerative tissue removed to treat another person suffering from a severe or life-threatening disease. While great good can potentially result from this as the recipient’s life may be saved, ethical unease remains over the ‘use’ of young children in this way. This paper examines the ethical approaches that have featured in the debate over the acceptability and limits of this practice, and how these are reflected in Australia’s legal regime governing removal of tissue from young children. This analysis demonstrates a troubling dichotomy within the Australia’s laws that requires decision-makers to adopt inconsistent ethical approaches depending on where a donor child is situated. It is argued that this inconsistency in approach warrants legal reform of this ethically sensitive issue.
Resumo:
Sustainable housing implementation requires strong support from the public, government and the housing industry. Lack of public awareness and understanding of the language and the meaning of sustainable housing may cause lack of public support. Salama stated that "sustainability or sustainable design is simply a rephrasing of some of the forgotten values of traditional architecture and urbanism"(Salama 2007). This exploratory paper examines public awareness of sustainable housing in Saudi Arabia. In developing countries, like Saudi Arabia, which have been experiencing a rapid rate of urbanisation, sustainable concept intervention is essential due to the scarcity of resources (Reffat 2004a). Sustainable building methods include the full use of the site design, passive solar design, natural light and ventilation. This paper reports on an exploratory survey on understanding the potential of the implementation of sustainable housing in Saudi Arabia. The main problem is that more than half of respondents were not aware of sustainable housing. Thus, one of the recommendations from the survey is to educate the public by using local media to inform people of the benefits of sustainable implementation to both new and existing housing stock.
Resumo:
Building on the recommendations of the Bradley Review (2008), the Australian Federal government intends to promote a higher level of penetration of tertiary qualification across the broader Australian community which is anticipated to result in increased levels of standardisation across university degrees. In the field of property, tertiary academic programs are very closely aligned to the needs of a range of built environment professions and there are well developed synergies between the relevant professional bodies and the educational institutions. The strong nexus between the academic and the professional content is characterised by ongoing industry accreditation which nominates a range of outcomes which the academic programs must maintain across a range of specified metrics. Commonly, the accrediting bodies focus on standard of minimum requirements especially in the area of specialised subject areas where they require property graduates to demonstrate appropriate learning and attitudes. In addition to nominated content fields, in every undergraduate degree program there are also many other subjects which provide a richer experience for the students beyond the merely professional. This study focuses on the nonspecialised knowledge field which varies across the universities offering property degree courses as every university has the freedom to pursue its own policy for these non-specialised units. With universities being sensitive to their role of in the appropriate socialisation of new entrants, first year units have been used as a vehicle to support students’ transition into university education and the final year units seek to support students’ integration into the professional world. Consequentially, many property programs have to squeeze their property-specific units to accommodate more generic units for both first year and final year units and the resulting diversity is a feature of the current range of property degrees across Australia which this research will investigate. The matrix of knowledge fields nominated by the Australian Property Institute for accreditation of degrees accepted for Certified Practising Valuer (CPV) educational requirement and the complementary requirements of the other major accrediting body (RICS) are used to classify and compare similarities and differences across property degrees in the light of the streamlining anticipated from the Bradley Review.
Resumo:
Purpose – In the 21st Century, as knowledge, technology and education are widely accepted to play key roles in the local economic development, the importance of making space and place for knowledge production is, therefore, on the rise resulting many city administrations and urban policy-makers worldwide restructuring their cities to become highly competitive and creative. Consequently, this has led to a new type of city form, knowledge city, and a new approach in their development, knowledge-based urban development. In this context, knowledge-based foundations of universities are regarded as one of the key elements for knowledge-based urban development and knowledge city formation due to their ability to provide a strong platform for knowledge generation, marketing and transfer. This paper aims to investigate the role and importance of universities and their knowledge-based foundations in the context of developing countries, particularly in Malaysia, in building prosperous knowledge cities of the era of the knowledge economy. Design/Methodology/Approach – The main methodological techniques employed in this research includes: a thorough review of the literature on the role of universities in spatial and socio-economic development of cities; a best practice analysis and policy review of urban and regional development policies targeting to use of university clusters in leveraging knowledge-based development, and; a case study in Malaysia with a review of various policy documents and strategic plans of the local universities and local and state authorities, interviews with key actors, and a trend analysis of local socio-economic and spatial changes. Originality/Value – This paper reports the findings of a pioneering research on examining the role and impact of universities and their knowledge-based foundations, in the context of Malaysia, in building knowledge cities of the era of the knowledge economy. By undertaking a case study investigation in Bandar Seri Iskandar, which is a newly emerging Malaysian knowledge city, located in Perak, Malaysia, the paper sheds light on an important issue of the 21st Century of how universities contribute to the knowledge-based development of cities. Practical Implications – Universities with their rich knowledge-based foundations are increasingly being recognised as knowledge hubs, exercising a strong influence in the intellectual vitality of the city where they are embedded. This paper reveals that universities, in joint action with business and society at large, are necessary prerequisites for constructing and maintaining knowledge societies and, therefore, building prosperous knowledge cities. In light of the literature and case findings, the paper sheds light on the contribution of knowledge-based foundations of universities in knowledge city formation and provides generic recommendations for cities and regions seeking knowledge city transformation.
Resumo:
One of the greatest challenges for the study of photocatalysts is to devise new catalysts that possess high activity under visible light illumination. This would allow the use of an abundant and green energy source, sunlight, to drive chemical reactions. Gold nanoparticles strongly absorb both visible light and UV light. It is therefore possible to drive chemical reactions utilising a significant fraction of full sunlight spectrum. Here we prepared gold nanoparticles supported on various oxide powders, and reported a new finding that gold nanoparticles on oxide supports exhibit significant activity for the oxidation of formaldehyde and methanol in the air at ambient temperature, when illuminated with visible light. We suggested that visible light can greatly enhance local electromagnetic fields and heat gold nanoparticles due to surface plasmon resonance effect which provides activation energy for the oxidation of organic molecules. Moreover, the nature of the oxide support has an important influence on the activity of the gold nanoparticles. The finding reveals the possibility to drive chemical reactions with sunlight on gold nanoparticles at ambient temperature, highlighting a new direction for research on visible light photocatalysts. Gold nanoparticles supported on oxides also exhibit significant dye oxidation activity under visible light irradiation in aqueous solution at ambient temperature. Turnover frequencies of the supported gold nanoparticles for the dye degradation are much higher than titania based photocatalysts under both visible and UV light. These gold photocatalysts can also catalyse phenol degradation as well as selective oxidation of benzyl alcohol under UV light. The reaction mechanism for these photocatalytic oxidations was studied. Gold nanoparticles exhibit photocatalytic activity due to visible light heating gold electrons in 6sp band, while the UV absorption results in electron holes in gold 5d band to oxidise organic molecules. Silver nanoparticles also exhibit considerable visible light and UV light absorption due to surface plasmon resonance effect and the interband transition of 4d electrons to the 5sp band, respectively. Therefore, silver nanoparticles are potentially photocatalysts that utilise the solar spectrum effectively. Here we reported that silver nanoparticles at room temperature can be used to drive chemical reactions when illuminated with light throughout the solar spectrum. The significant activities for dye degradation by silver nanoparticles on oxide supports are even better than those by semiconductor photocatalysts. Moreover, silver photocatalysts also can degrade phenol and drive the oxidation of benzyl alcohol to benzaldehyde under UV light. We suggested that surface plasmon resonance effect and interband transition of silver nanoparticles can activate organic molecule oxidations under light illumination.
Resumo:
In this article, an enriched radial point interpolation method (e-RPIM) is developed for computational mechanics. The conventional radial basis function (RBF) interpolation is novelly augmented by the suitable basis functions to reflect the natural properties of deformation. The performance of the enriched meshless RBF shape functions is first investigated using the surface fitting. The surface fitting results have proven that, compared with the conventional RBF, the enriched RBF interpolation has a much better accuracy to fit a complex surface than the conventional RBF interpolation. It has proven that the enriched RBF shape function will not only possess all advantages of the conventional RBF interpolation, but also can accurately reflect the deformation properties of problems. The system of equations for two-dimensional solids is then derived based on the enriched RBF shape function and both of the meshless strong-form and weak-form. A numerical example of a bar is presented to study the effectiveness and efficiency of e-RPIM. As an important application, the newly developed e-RPIM, which is augmented by selected trigonometric basis functions, is applied to crack problems. It has been demonstrated that the present e-RPIM is very accurate and stable for fracture mechanics problems.