947 resultados para Stochastic models
Resumo:
The aim of this paper is to investigate the steady state response of beams under the action of random support motions. The study is of relevance in the context of earthquake response of extended land based structures such as pipelines and long span bridges, and, secondary systems such as piping networks in nuclear power plant installations. The following complicating features are accounted for in the response analysis: (a) differential support motions: this is characterized in terms of cross power spectral density functions associated with distinct support motions, (b) nonlinear support conditions, and (c) stochastically inhomogeneous stiffness and mass variations of the beam structure; questions on non-Gaussian models for these variations are considered. The method of stochastic finite elements is combined with equivalent linearization technique and Monte Carlo simulations to obtain response moments.
Resumo:
Stochastic hybrid systems arise in numerous applications of systems with multiple models; e.g., air traffc management, flexible manufacturing systems, fault tolerant control systems etc. In a typical hybrid system, the state space is hybrid in the sense that some components take values in a Euclidean space, while some other components are discrete. In this paper we propose two stochastic hybrid models, both of which permit diffusion and hybrid jump. Such models are essential for studying air traffic management in a stochastic framework.
Resumo:
We consider the asymptotics of the invariant measure for the process of spatial distribution of N coupled Markov chains in the limit of a large number of chains. Each chain reflects the stochastic evolution of one particle. The chains are coupled through the dependence of transition rates on the spatial distribution of particles in the various states. Our model is a caricature for medium access interactions in wireless local area networks. Our model is also applicable in the study of spread of epidemics in a network. The limiting process satisfies a deterministic ordinary differential equation called the McKean-Vlasov equation. When this differential equation has a unique globally asymptotically stable equilibrium, the spatial distribution converges weakly to this equilibrium. Using a control-theoretic approach, we examine the question of a large deviation from this equilibrium.
Resumo:
Impact of global warming on daily rainfall is examined using atmospheric variables from five General Circulation Models (GCMs) and a stochastic downscaling model. Daily rainfall at eleven raingauges over Malaprabha catchment of India and National Center for Environmental Prediction (NCEP) reanalysis data at grid points over the catchment for a continuous time period 1971-2000 (current climate) are used to calibrate the downscaling model. The downscaled rainfall simulations obtained using GCM atmospheric variables corresponding to the IPCC-SRES (Intergovernmental Panel for Climate Change - Special Report on Emission Scenarios) A2 emission scenario for the same period are used to validate the results. Following this, future downscaled rainfall projections are constructed and examined for two 20 year time slices viz. 2055 (i.e. 2046-2065) and 2090 (i.e. 2081-2100). The model results show reasonable skill in simulating the rainfall over the study region for the current climate. The downscaled rainfall projections indicate no significant changes in the rainfall regime in this catchment in the future. More specifically, 2% decrease by 2055 and 5% decrease by 2090 in monsoon (HAS) rainfall compared to the current climate (1971-2000) under global warming conditions are noticed. Also, pre-monsoon (JFMAM) and post-monsoon (OND) rainfall is projected to increase respectively, by 2% in 2055 and 6% in 2090 and, 2% in 2055 and 12% in 2090, over the region. On annual basis slight decreases of 1% and 2% are noted for 2055 and 2090, respectively.
Resumo:
The calculation of First Passage Time (moreover, even its probability density in time) has so far been generally viewed as an ill-posed problem in the domain of quantum mechanics. The reasons can be summarily seen in the fact that the quantum probabilities in general do not satisfy the Kolmogorov sum rule: the probabilities for entering and non-entering of Feynman paths into a given region of space-time do not in general add up to unity, much owing to the interference of alternative paths. In the present work, it is pointed out that a special case exists (within quantum framework), in which, by design, there exists one and only one available path (i.e., door-way) to mediate the (first) passage -no alternative path to interfere with. Further, it is identified that a popular family of quantum systems - namely the 1d tight binding Hamiltonian systems - falls under this special category. For these model quantum systems, the first passage time distributions are obtained analytically by suitably applying a method originally devised for classical (stochastic) mechanics (by Schroedinger in 1915). This result is interesting especially given the fact that the tight binding models are extensively used in describing everyday phenomena in condense matter physics.
Resumo:
Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.
Resumo:
The stress release model, a stochastic version of the elastic rebound theory, is applied to the large events from four synthetic earthquake catalogs generated by models with various levels of disorder in distribution of fault zone strength (Ben-Zion, 1996) They include models with uniform properties (U), a Parkfield-type asperity (A), fractal brittle properties (F), and multi-size-scale heterogeneities (M). The results show that the degree of regularity or predictability in the assumed fault properties, based on both the Akaike information criterion and simulations, follows the order U, F, A, and M, which is in good agreement with that obtained by pattern recognition techniques applied to the full set of synthetic data. Data simulated from the best fitting stress release models reproduce, both visually and in distributional terms, the main features of the original catalogs. The differences in character and the quality of prediction between the four cases are shown to be dependent on two main aspects: the parameter controlling the sensitivity to departures from the mean stress level and the frequency-magnitude distribution, which differs substantially between the four cases. In particular, it is shown that the predictability of the data is strongly affected by the form of frequency-magnitude distribution, being greatly reduced if a pure Gutenburg-Richter form is assumed to hold out to high magnitudes.
Resumo:
Published as an article in: Investigaciones Economicas, 2005, vol. 29, issue 3, pages 483-523.
Resumo:
This paper analyzes the trend processes characterized by two standard growth models using simple econometrics. The first model is the basic neoclassical growth model that postulates a deterministic trend for output. The second model is the Uzawa-Lucas model that postulates a stochastic trend for output. The aim is to understand how the different trend processes for output assumed by these two standard growth models determine the ability of each model to explain the observed trend processes of other macroeconomic variables such as consumption and investment. The results show that the two models reproduce the output trend process. Moreover, the results show that the basic growth model captures properly the consumption trend process, but fails in characterizing the investment trend process. The reverse is true for the Uzawa-Lucas model.
Resumo:
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets. © 2010 Springer-Verlag.
Resumo:
The uncertainty associated with a rainfall-runoff and non-point source loading (NPS) model can be attributed to both the parameterization and model structure. An interesting implication of the areal nature of NPS models is the direct relationship between model structure (i.e. sub-watershed size) and sample size for the parameterization of spatial data. The approach of this research is to find structural limitations in scale for the use of the conceptual NPS model, then examine the scales at which suitable stochastic depictions of key parameter sets can be generated. The overlapping regions are optimal (and possibly the only suitable regions) for conducting meaningful stochastic analysis with a given NPS model. Previous work has sought to find optimal scales for deterministic analysis (where, in fact, calibration can be adjusted to compensate for sub-optimal scale selection); however, analysis of stochastic suitability and uncertainty associated with both the conceptual model and the parameter set, as presented here, is novel; as is the strategy of delineating a watershed based on the uncertainty distribution. The results of this paper demonstrate a narrow range of acceptable model structure for stochastic analysis in the chosen NPS model. In the case examined, the uncertainties associated with parameterization and parameter sensitivity are shown to be outweighed in significance by those resulting from structural and conceptual decisions. © 2011 Copyright IAHS Press.
Resumo:
We consider the general problem of constructing nonparametric Bayesian models on infinite-dimensional random objects, such as functions, infinite graphs or infinite permutations. The problem has generated much interest in machine learning, where it is treated heuristically, but has not been studied in full generality in non-parametric Bayesian statistics, which tends to focus on models over probability distributions. Our approach applies a standard tool of stochastic process theory, the construction of stochastic processes from their finite-dimensional marginal distributions. The main contribution of the paper is a generalization of the classic Kolmogorov extension theorem to conditional probabilities. This extension allows a rigorous construction of nonparametric Bayesian models from systems of finite-dimensional, parametric Bayes equations. Using this approach, we show (i) how existence of a conjugate posterior for the nonparametric model can be guaranteed by choosing conjugate finite-dimensional models in the construction, (ii) how the mapping to the posterior parameters of the nonparametric model can be explicitly determined, and (iii) that the construction of conjugate models in essence requires the finite-dimensional models to be in the exponential family. As an application of our constructive framework, we derive a model on infinite permutations, the nonparametric Bayesian analogue of a model recently proposed for the analysis of rank data.
Resumo:
Conventional Hidden Markov models generally consist of a Markov chain observed through a linear map corrupted by additive noise. This general class of model has enjoyed a huge and diverse range of applications, for example, speech processing, biomedical signal processing and more recently quantitative finance. However, a lesser known extension of this general class of model is the so-called Factorial Hidden Markov Model (FHMM). FHMMs also have diverse applications, notably in machine learning, artificial intelligence and speech recognition [13, 17]. FHMMs extend the usual class of HMMs, by supposing the partially observed state process is a finite collection of distinct Markov chains, either statistically independent or dependent. There is also considerable current activity in applying collections of partially observed Markov chains to complex action recognition problems, see, for example, [6]. In this article we consider the Maximum Likelihood (ML) parameter estimation problem for FHMMs. Much of the extant literature concerning this problem presents parameter estimation schemes based on full data log-likelihood EM algorithms. This approach can be slow to converge and often imposes heavy demands on computer memory. The latter point is particularly relevant for the class of FHMMs where state space dimensions are relatively large. The contribution in this article is to develop new recursive formulae for a filter-based EM algorithm that can be implemented online. Our new formulae are equivalent ML estimators, however, these formulae are purely recursive and so, significantly reduce numerical complexity and memory requirements. A computer simulation is included to demonstrate the performance of our results. © Taylor & Francis Group, LLC.
Resumo:
The study of random dynamic systems usually requires the definition of an ensemble of structures and the solution of the eigenproblem for each member of the ensemble. If the process is carried out using a conventional numerical approach, the computational cost becomes prohibitive for complex systems. In this work, an alternative numerical method is proposed. The results for the response statistics are compared with values obtained from a detailed stochastic FE analysis of plates. The proposed method seems to capture the statistical behaviour of the response with a reduced computational cost.