939 resultados para Statistical Language Model
Resumo:
Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
Aplicación de simulación de Monte Carlo y técnicas de Análisis de la Varianza (ANOVA) a la comparación de modelos estocásticos dinámicos para accidentes de tráfico.
Resumo:
We present an undergraduate course on concurrent programming where formal models are used in different stages of the learning process. The main practical difference with other approaches lies in the fact that the ability to develop correct concurrent software relies on a systematic transformation of formal models of inter-process interaction (so called shared resources), rather than on the specific constructs of some programming language. Using a resource-centric rather than a language-centric approach has some benefits for both teachers and students. Besides the obvious advantage of being independent of the programming language, the models help in the early validation of concurrent software design, provide students and teachers with a lingua franca that greatly simplifies communication at the classroom and during supervision, and help in the automatic generation of tests for the practical assignments. This method has been in use, with slight variations, for some 15 years, surviving changes in the programming language and course length. In this article, we describe the components and structure of the current incarnation of the course?which uses Java as target language?and some tools used to support our method. We provide a detailed description of the different outcomes that the model-driven approach delivers (validation of the initial design, automatic generation of tests, and mechanical generation of code) from a teaching perspective. A critical discussion on the perceived advantages and risks of our approach follows, including some proposals on how these risks can be minimized. We include a statistical analysis to show that our method has a positive impact in the student ability to understand concurrency and to generate correct code.
Resumo:
A “most probable state” equilibrium statistical theory for random distributions of hetons in a closed basin is developed here in the context of two-layer quasigeostrophic models for the spreading phase of open-ocean convection. The theory depends only on bulk conserved quantities such as energy, circulation, and the range of values of potential vorticity in each layer. The simplest theory is formulated for a uniform cooling event over the entire basin that triggers a homogeneous random distribution of convective towers. For a small Rossby deformation radius typical for open-ocean convection sites, the most probable states that arise from this theory strongly resemble the saturated baroclinic states of the spreading phase of convection, with a stabilizing barotropic rim current and localized temperature anomaly.
Resumo:
The HIV Reverse Transcriptase and Protease Sequence Database is an on-line relational database that catalogs evolutionary and drug-related sequence variation in the human immunodeficiency virus (HIV) reverse transcriptase (RT) and protease enzymes, the molecular targets of anti-HIV therapy (http://hivdb.stanford.edu). The database contains a compilation of nearly all published HIV RT and protease sequences, including submissions from International Collaboration databases and sequences published in journal articles. Sequences are linked to data about the source of the sequence sample and the antiretroviral drug treatment history of the individual from whom the isolate was obtained. During the past year 3500 sequences have been added and the data model has been expanded to include drug susceptibility data on sequenced isolates. Database content has also been integrated with didactic text and the output of two sequence analysis programs.
Resumo:
The field of natural language processing (NLP) has seen a dramatic shift in both research direction and methodology in the past several years. In the past, most work in computational linguistics tended to focus on purely symbolic methods. Recently, more and more work is shifting toward hybrid methods that combine new empirical corpus-based methods, including the use of probabilistic and information-theoretic techniques, with traditional symbolic methods. This work is made possible by the recent availability of linguistic databases that add rich linguistic annotation to corpora of natural language text. Already, these methods have led to a dramatic improvement in the performance of a variety of NLP systems with similar improvement likely in the coming years. This paper focuses on these trends, surveying in particular three areas of recent progress: part-of-speech tagging, stochastic parsing, and lexical semantics.
Resumo:
In recent years, several explanatory models have been developed which attempt to analyse the predictive worth of various factors in relation to academic achievement, as well as the direct and indirect effects that they produce. The aim of this study was to examine a structural model incorporating various cognitive and motivational variables which influence student achievement in the two basic core skills in the Spanish curriculum: Spanish Language and Mathematics. These variables included differential aptitudes, specific self-concept, goal orientations, effort and learning strategies. The sample comprised 341 Spanish students in their first year of Compulsory Secondary Education. Various tests and questionnaires were used to assess each student, and Structural Equation Modelling (SEM) was employed to study the relationships in the initial model. The proposed model obtained a satisfactory fit for the two subjects studied, and all the relationships hypothesised were significant. The variable with the most explanatory power regarding academic achievement was mathematical and verbal aptitude. Also notable was the direct influence of specific self-concept on achievement, goal-orientation and effort, as was the mediatory effect that effort and learning strategies had between academic goals and final achievement.
Resumo:
In this paper we describe Fénix, a data model for exchanging information between Natural Language Processing applications. The format proposed is intended to be flexible enough to cover both current and future data structures employed in the field of Computational Linguistics. The Fénix architecture is divided into four separate layers: conceptual, logical, persistence and physical. This division provides a simple interface to abstract the users from low-level implementation details, such as programming languages and data storage employed, allowing them to focus in the concepts and processes to be modelled. The Fénix architecture is accompanied by a set of programming libraries to facilitate the access and manipulation of the structures created in this framework. We will also show how this architecture has been already successfully applied in different research projects.