997 resultados para Sr Isotopic Ratio
Resumo:
The present-day climate in the Mediterranean region is characterized by mild, wet winters and hot, dry summers. There is contradictory evidence as to whether the present-day conditions (“Mediterranean climate”) already existed in the Late Miocene. This thesis presents seasonally-resolved isotope and element proxy data obtained from Late Miocene reef corals from Crete (Southern Aegean, Eastern Mediterranean) in order to illustrate climate conditions in the Mediterranean region during this time. There was a transition from greenhouse to icehouse conditions without a Greenland ice sheet during the Late Miocene. Since the Greenland ice sheet is predicted to melt fully within the next millennia, Late Miocene climate mechanisms can be considered as useful analogues in evaluating models of Northern Hemispheric climate conditions in the future. So far, high resolution chemical proxy data on Late Miocene environments are limited. In order to enlarge the proxy database for this time span, coral genus Tarbellastraea was evaluated as a new proxy archive, and proved reliable based on consistent oxygen isotope records of Tarbellastraea and the established paleoenvironmental archive of coral genus Porites. In combination with lithostratigraphic data, global 87Sr/86Sr seawater chronostratigraphy was used to constrain the numerical age of the coral sites, assuming the Mediterranean Sea to be equilibrated with global open ocean water. 87Sr/86Sr ratios of Tarbellastraea and Porites from eight stratigraphically different sampling sites were measured by thermal ionization mass spectrometry. The ratios range from 0.708900 to 0.708958 corresponding to ages of 10 to 7 Ma (Tortonian to Early Messinian). Spectral analyses of multi-decadal time-series yield interannual δ18O variability with periods of ~2 and ~5 years, similar to that of modern records, indicating that pressure field systems comparable to those controlling the seasonality of present-day Mediterranean climate existed, at least intermittently, already during the Late Miocene. In addition to sea surface temperature (SST), δ18O composition of coral aragonite is controlled by other parameters such as local seawater composition which as a result of precipitation and evaporation, influences sea surface salinity (SSS). The Sr/Ca ratio is considered to be independent of salinity, and was used, therefore, as an additional proxy to estimate seasonality in SST. Major and trace element concentrations in coral aragonite determined by laser ablation inductively coupled plasma mass spectrometry yield significant variations along a transect perpendicular to coral growth increments, and record varying environmental conditions. The comparison between the average SST seasonality of 7°C and 9°C, derived from average annual δ18O (1.1‰) and Sr/Ca (0.579 mmol/mol) amplitudes, respectively, indicates that the δ18O-derived SST seasonality is biased by seawater composition, reducing the δ18O amplitude by 0.3‰. This value is equivalent to a seasonal SSS variation of 1‰, as observed under present-day Aegean Sea conditions. Concentration patterns of non-lattice bound major and trace elements, related to trapped particles within the coral skeleton, reflect seasonal input of suspended load into the reef environment. δ18O, Sr/Ca and non-lattice bound element proxy records, as well as geochemical compositions of the trapped particles, provide evidence for intense precipitation in the Eastern Mediterranean during winters. Winter rain caused freshwater discharge and transport of weathering products from the hinterland into the reef environment. There is a trend in coral δ18O data to more positive mean δ18O values (–2.7‰ to –1.7‰) coupled with decreased seasonal δ18O amplitudes (1.1‰ to 0.7‰) from 10 to 7 Ma. This relationship is most easily explained in terms of more positive summer δ18O. Since coral diversity and annual growth rates indicate more or less constant average SST for the Mediterranean from the Tortonian to the Early Messinian, more positive mean and summer δ18O indicate increasing aridity during the Late Miocene, and more pronounced during summers. The analytical results implicate that winter rainfall and summer drought, the main characteristics of the present-day Mediterranean climate, were already present in the Mediterranean region during the Late Miocene. Some models have argued that the Mediterranean climate did not exist in this region prior to the Pliocene. However, the data presented here show that conditions comparable to those of the present-day existed either intermittently or permanently since at least about 10 Ma.
Resumo:
Der zunehmende Anteil von Strom aus erneuerbaren Energiequellen erfordert ein dynamisches Konzept, um Spitzenlastzeiten und Versorgungslücken aus der Wind- und Solarenergie ausgleichen zu können. Biogasanlagen können aufgrund ihrer hohen energetischen Verfügbarkeit und der Speicherbarkeit von Biogas eine flexible Energiebereitstellung ermöglichen und darüber hinaus über ein „Power-to-Gas“-Verfahren bei einem kurzzeitigen Überschuss von Strom eine Überlastung des Stromnetzes verhindern. Ein nachfrageorientierter Betrieb von Biogasanlagen stellt jedoch hohe Anforderungen an die Mikrobiologie im Reaktor, die sich an die häufig wechselnden Prozessbedingungen wie der Raumbelastung im Reaktor anpassen muss. Eine Überwachung des Fermentationsprozesses in Echtzeit ist daher unabdingbar, um Störungen in den mikrobiellen Gärungswegen frühzeitig erkennen und adäquat entgegenwirken zu können. rnBisherige mikrobielle Populationsanalysen beschränken sich auf aufwendige, molekularbiologische Untersuchungen des Gärsubstrates, deren Ergebnisse dem Betreiber daher nur zeitversetzt zur Verfügung stehen. Im Rahmen dieser Arbeit wurde erstmalig ein Laser-Absorptionsspektrometer zur kontinuierlichen Messung der Kohlenstoff-Isotopenverhältnisse des Methans an einer Forschungsbiogasanlage erprobt. Dabei konnten, in Abhängigkeit der Raumbelastung und Prozessbedingungen variierende Isotopenverhältnisse gemessen werden. Anhand von Isolaten aus dem untersuchten Reaktor konnte zunächst gezeigt werden, dass für jeden Methanogenesepfad (hydrogeno-troph, aceto¬klastisch sowie methylotroph) eine charakteristische, natürliche Isotopensignatur im Biogas nachgewiesen werden kann, sodass eine Identifizierung der aktuell dominierenden methanogenen Reaktionen anhand der Isotopen-verhältnisse im Biogas möglich ist. rnDurch den Einsatz von 13C- und 2H-isotopen¬markierten Substraten in Rein- und Mischkulturen und Batchreaktoren, sowie HPLC- und GC-Unter¬suchungen der Stoffwechselprodukte konnten einige bislang unbekannte C-Flüsse in Bioreaktoren festgestellt werden, die sich wiederum auf die gemessenen Isotopenverhältnisse im Biogas auswirken können. So konnte die Entstehung von Methanol sowie dessen mikrobieller Abbauprodukte bis zur finalen CH4-Bildung anhand von fünf Isolaten erstmalig in einer landwirtschaftlichen Biogasanlage rekonstruiert und das Vorkommen methylotropher Methanogenesewege nachgewiesen werden. Mithilfe molekularbiologischer Methoden wurden darüber hinaus methanoxidierende Bakterien zahlreicher, unbekannter Arten im Reaktor detektiert, deren Vorkommen aufgrund des geringen O2-Gehaltes in Biogasanlagen bislang nicht erwartet wurde. rnDurch die Konstruktion eines synthetischen DNA-Stranges mit den Bindesequenzen für elf spezifische Primerpaare konnte eine neue Methode etabliert werden, anhand derer eine Vielzahl mikrobieller Zielorganismen durch die Verwendung eines einheitlichen Kopienstandards in einer real-time PCR quantifiziert werden können. Eine über 70 Tage durchgeführte, wöchentliche qPCR-Analyse von Fermenterproben zeigte, dass die Isotopenverhältnisse im Biogas signifikant von der Zusammensetzung der Reaktormikrobiota beeinflusst sind. Neben den aktuell dominierenden Methanogenesewegen war es auch möglich, einige bakterielle Reaktionen wie eine syntrophe Acetatoxidation, Acetogenese oder Sulfatreduktion anhand der δ13C (CH4)-Werte zu identifizieren, sodass das hohe Potential einer kontinuierlichen Isotopenmessung zur Prozessanalytik in Biogasanlagen aufgezeigt werden konnte.rn
Resumo:
The gladiator cemetery discovered in Ephesus (Turkey) in 1993 dates to the 2nd and 3rd century AD. The aim of this study is to reconstruct diverse diet, social stratification, and migration of the inhabitants of Roman Ephesus and the distinct group of gladiators. Stable carbon, nitrogen, and sulphur isotope analysis were applied, and inorganic bone elements (strontium, calcium) were determined. In total, 53 individuals, including 22 gladiators, were analysed. All individuals consumed C3 plants like wheat and barley as staple food. A few individuals show indication of consumption of C4 plants. The δ13C values of one female from the gladiator cemetery and one gladiator differ from all other individuals. Their δ34S values indicate that they probably migrated from another geographical region or consumed different foods. The δ15N values are relatively low in comparison to other sites from Roman times. A probable cause for the depletion of 15N in Ephesus could be the frequent consumption of legumes. The Sr/Ca-ratios of the gladiators were significantly higher than the values of the contemporary Roman inhabitants. Since the Sr/Ca-ratio reflects the main Ca-supplier in the diet, the elevated values of the gladiators might suggest a frequent use of a plant ash beverage, as mentioned in ancient texts.
Resumo:
Ontogenetic variation in 4 trace element ((88)Sr, (137)Ba, (24)Mg, (23)Na) concentrations and their ratios to Ca were measured in statoliths of the jumbo flying squid Dosidicus gigas off the Exclusive Economic Zone of Chilean and Peruvian waters using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The element compositions of statoliths showed no significant differences between females and males. All of the elements in different growth zones showed significant variations, except for Mg. Sr:Ca and Mg:Ca were good indicators for distinguishing squid from autumn and winter spawning seasons. Sr:Ca and Ba:Ca distribution patterns in statoliths confirmed that paralarvae and juvenile squid inhabit surface waters, while subadult squid migrate into deeper waters. An increasing Sr: Ca ratio of subadult squid could be explained by declining temperature gradients from northern to southern sampling locations, although no significant Sr: Ca differences were observed (p > 0.05). Mg:Ca ratios decreased progressively from the nucleus to the peripheral zone, which might be correlated with statolith growth rates. Na:Ca ratios slightly declined from paralarvae to the subadult phase. Quantitative relationships between statolith trace elements and environmental conditions under different growth stages are needed to improve our understanding of life history of D. gigas.
Resumo:
The first data on chemical composition of nonreef-building non-zooxanthellate deep-sea corals presented in this publication allow us to identify following tendencies manifested in the biomineralization process. Comparison of concentration levels of some chemical elements in scleractinian corals and ambient ocean waters suggests that corals do not accumulate K in the process of biomineralization and weakly accumulate Mg, whereas Ca, Sr, Si, Al, Ti, Mn, Zn, Cu, Cd, Pb, and Fe are concentrated in skeletons of corals with enrichment coefficients of 10**3 to 10**7. Correlations between components contained in the skeletons of scleractinian corals suggest that the source of Al, Si, Fe, and Ti in them is the clayey constituent of bottom sediments and zooplankton, while trace elements are likely accumulated via bioassimilation from seawater. Such elements as Mn, Sr, Pb, and Cd can structurally substitute Ca in calcite and aragonite. Variations in concentrations of the elements in coral skeletons depending on their habitat depths are fairly significant. As could be expected Ca and Mg concentrations are prone to decrease with depth (R = -0.55 and -0.51, respectively), which can possibly be caused by partial dissolution of carbonate skeletons with increasing depth, whereas the Sr/Ca ratio does not depend on depth.
Resumo:
The observation by Heinrich (1988) that, during the last glacial period, much of the input of ice-rafted detritus to the North Atlantic sediments may have occurred as a succession of catastrophic events, rekindled interest on the history of the northern ice sheets over the last glacial period. In this paper, we present a rapid method to study the distribution of these events (both in space and time) using whole core low-field magnetic susceptibility. We report on approximately 20 cores covering the last 150 to 250 kyr. Well-defined patterns of ice-rafted detritus appear during periods of large continental ice-sheet extent, although these are not always associated within their maxima. Most of the events may be traced across the North Atlantic Ocean. For the six most recent Heinrich layers (HL), two distinct patterns exist: HL1, HL2, HL4, HL5 are distributed along the northern boundary of the Glacial Polar Front, over most of the North Atlantic between ~40° and 50°N; HL3 is more restricted to the central and eastern part of the northern Atlantic. The Nd-Sr isotopic composition of the material constituting different Heinrich events indicates the different provenance of the two patterns: HL3 has a typical Scandinavia-Arctic-Icelandic 'young crust' signature, and the others have a large component of northern Quebec and northern West Greenland 'old crust' material. These isotopic results, obtained on core SU-9008 from the North American basin, are in agreement with the study by Jantschik and Huon (1992), who used K-Ar dating of silt- and clay-size fractions of an eastern basin core (ME-68-89). These data confirm the large spatial scale of these events, and the enormous amount of ice-rafted detritus they represent.
Resumo:
We analyzed Nd and Sr isotopic compositions of Neogene fossil fish teeth from two sites in the Pacific in order to determine the effect of cleaning protocols and burial diagenesis on the preservation of seawater isotopic values. Sr is incorporated into the teeth at the time of growth; thus Sr isotopes are potentially valuable for chemostratigraphy. Nd isotopes are potential conservative tracers of paleocirculation; however, Nd is incorporated post-mortem, and may record diagenetic pore waters rather than seawater. We evaluated samples from two sites (Site 807A, Ontong Java Plateau and Site 786A, Izu-Bonin Arc) that were exposed to similar bottom waters, but have distinct lithologies and pore water chemistries. The Sr isotopic values of the fish teeth appear to accurately reflect contemporaneous seawater at both sites. The excellent correlation between the Nd isotopic values of teeth from the two sites suggests that the Nd is incorporated while the teeth are in chemical equilibrium with seawater, and that the signal is preserved over geologic timescales and subsequent burial. These data also corroborate paleoseawater Nd isotopic compositions derived from Pacific ferromanganese crusts that were recovered from similar water depths (Ling et al., 1997; doi:10.1016/S0012-821X(96)00224-5). This corroboration strongly suggests that both materials preserve seawater Nd isotope values. Variations in Pacific deepwater e-Nd values are consistent with predictions for the shoaling of the Isthmus of Panama and the subsequent initiation of nonradiogenic North Atlantic Deep Water that entered the Pacific via the Antarctic Circumpolar Current.
Resumo:
Nd and Pb isotopes were measured on the fine fraction of one sediment core drilled off southern Greenland. This work aims to reconstruct the evolution of deep circulation patterns in the North Atlantic during the Holocene on the basis of sediment supply variations. For the last 12 kyr, three sources have contributed to the sediment mixture: the North American Shield, the Pan-African and Variscan crusts, and the Mid-Atlantic Ridge. Clay isotope signatures indicate two mixtures of sediment sources. The first mixture (12.2-6.5 ka) is composed of material derived from the North American shield and from a "young" crustal source. From 6.5 ka onward the mixture is characterized by a young crustal component and by a volcanic component characteristic of the Mid-Atlantic Ridge. Since the significant decrease in proximal deglacial supplies, the evolution of the relative contributions of the sediment sources suggests major changes in the relative contributions of the deep water masses carried by the Western Boundary Undercurrent over the past 8.4 kyr. The progressive intensification of the Western Boundary Undercurrent was initially associated mainly with the transport of the Northeast Atlantic Deep Water mass until 6.5 ka and with the Denmark Strait Overflow Water thereafter. The establishment of the modern circulation at 3 ka suggests a reduced influence of the Denmark Strait Overflow Water, synchronous with the full appearance of the Labrador Seawater mass. Our isotopic data set emphasizes several changes in the relative contribution of the two major components of North Atlantic Deep Water throughout the Holocene.
Resumo:
This study tests and improves on previously published early and middle Miocene 87Sr/86Sr marine correlations, presents Sr isotopic age correlations for this interval using the new timescale of Cande and Kent [1992 doi:10.1029/92JB01202], and evaluates Sr isotopic changes against an inferred glacioeustatic proxy. We generated a latest Oligocene to early late Miocene 87Sr/86Sr isotope record from Ocean Drilling Program (ODP) Hole 747A; this site provides an excellent magnetostratigraphic record during most of this interval for independent age estimates, very good foraminiferal preservation, and excellent core recovery. Comparisons of new 87Sr/86Sr data from Hole 747A with previously published data from Deep Sea Drilling Project (DSDP) Sites 608 [Miller et al., 1991 doi:10.1029/90PA01941] and 588 [Hodell et al., 1991 doi:10.1130/0091-7613(1991)019<0024:VITSIC>2.3.CO;2] yield the following results: (1) confirmation and refinement of the early Miocene Sr isotope changes, (2) improved definition of the timing of the changes in slope of 87Sr/86Sr near 15.4 Ma and 22.8 Ma, (3) improved Sr isotopic age resolution for the middle Miocene with resolution as good as +/- 0.7 m.y., and (4) identification of an inflection in the Sr isotope record at 28.0 Ma based on the combined records from DSDP Site 522 [Miller et al., 1988 doi:10.1029/PA003i002p00223] and ODP Hole 747A. We have been unable to determine the cause of middle Miocene offset between Site 588 and Hole 747A data, although we believe it may be attributed to problems in the age assignments for Hole 588A for the interval ~14-11 Ma and Site 747 for the interval 11-8 Ma. Because Hole 747A results provide a better chronology than Site 588 for most of the Miocene and a better middle Miocene Sr isotope record than Site 608, we propose that Hole 747A serves as the best reference section for Miocene 87Sr/86Sr variations from ca. 23 to 11 Ma. Using 87Sr/86Sr data from Sites 522, 608, and 747A, we relate late Eocene to early Miocene inflections in the 87Sr/86Sr isotope record to oxygen isotope increases and decreases inferred to represent glacioeustatic events. The decreases (deglaciations) observed in the ?18O record apparently lead the 87Sr/86Sr inflections by 1 to 1.5 m.y.
Resumo:
Interstitial water studies from sites drilled during a transect of the Walvis Ridge indicate that concentration increases in calcium and decreases in magnesium toward and into the basement. These trends can be understood principally in terms of reactions taking place in Layer 2 of the oceanic crust. At Site 525, however, some removal of magnesium occurs within the sediment column. Concentration maxima of dissolved strontium clearly indicate that carbonate recrystallization occurs throughout the carbonate sediments, and studies of the Sr/Ca ratio in carbonates indicate that in chalks and limestones recrystallization is essentially complete. Predictions of dissolved strontium maxima generally fail; this can be understood as removal of strontium in basal sediments and/or basalts.
Resumo:
A set of numerical equations is developed to estimate past sea surface temperatures (SST) from fossil Antarctic diatoms. These equations take into account both the biogeographic distribution and experimentally derived silica dissolution. The data represent a revision and expansion of a floral data base used previously and includes samples resulting from progressive opal dissolution experiments. Factor analysis of 166 samples (124 Holocene core top and 42 artificial samples) resolved four factors. Three of these factors depend on the water mass distribution (one Subantarctic and two Antarctic assemblages); factor 4 corresponds to a 'dissolution assemblage'. Inclusion of this factor in the data analysis minimizes the effect of opal dissolution on the assemblages and gives accurate estimates of SST over a wide range of biosiliceous dissolution. A transfer function (DTF 166/34/4) is derived from the distribution of these factors versus summer SST. Its standard error is +/- 1°C in the -1 to +10 °C summer temperature range. This transfer function is used to estimate SST changes in two southern ocean cores (43°S and 55°S) which cover the last climatic cycle. The time scale is derived from the changes in foraminiferal oxygen and carbon isotopic ratios. The reconstructed SST records present strong analogies with the air temperature record over Antarctica at the Vostok site, derived from changes in the isotopic ratio of the ice. This similarity may be used to compare the oceanic isotope stratigraphy and the Vostok time scale derived from ice flow model. The oceanic time scale, if taken at face value, would indicate that large changes in ice accumulation rates occurred between warm and cold periods.
Resumo:
Os isotopic compositions and OS and Re concentrations were measured in H2O2-H2SO4 leachates and bulk sediment samples from Holes 717C and 718C of ODP Leg 116 in the Bengal Fan. Os isotopic results indicate that, at the sediment surface, the leachable Os fraction is derived from seawater. In contrast, leachable Os from Ganges River sediments has 187Os/188Os ratios (Pegram et al., 1994, doi:10.1016/0012-821X(94)90172-4) much higher than the marine value. This difference suggests that the leachable radiogenic Os carried by the river sediments is completely released to the oceans prior to sediment deposition in the Fan. A simple calculation, assuming these sediments to be typical of those delivered by the Ganges-Brahmaputra river system, suggests that this process can account for a substantial part of the rise in the seawater Os isotopic ratio observed over the past 16 m.y. Bengal Fan leachate 187Os/188Os ratios increase with increasing depositional age, in contrast to the seawater Os isotopic ratio, which decreases with increasing age. Several lines of evidence suggest that, at the time of sediment burial, the leachate Os compositions most likely reflected the seawater values. Thus, the current divergence is probably the result of post-depositional processes. One such process, in situ radiogenic ingrowth of 187Os, can be excluded because the measured Re concentrations of these sediments are too low. Similarly, since most of the bulk rock Os isotopic ratios were lower than those of the associated leachates, the high leachate 187Os/188Os values cannot be explained by in situ sediment alteration. Instead, it is proposed that the increase with age results from radiogenic OS brought in by thermoconvective circulation from further upslope in the Fan. The ultimate source of this 187Os would then be alteration of radiogenic sediments or post-depositional radioactive decay of Re in sediments rich in organic carbon. Finally, the divergence between the results obtained on Bengal Fan sediments and those obtained in the open ocean (Pegram et al., 1992, doi:10.1016/0012-821X(92)90132-F) by the same leaching technique suggest that Os sediment leachate data must be interpreted with caution.
Resumo:
The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal's ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C.
Resumo:
We analyzed strontium/calcium ratios (Sr/Ca) in four colonies of the Atlantic coral genus Montastrea with growth rates ranging from 2.3 to 12.6 mm/a. Derived Sr/Ca-sea surface temperature (SST) calibrations exhibit significant differences among the four colonies that cannot be explained by variations in SST or seawater Sr/Ca. For a single coral Sr/Ca ratio of 8.8 mmol/mol, the four calibrations predict SSTs ranging from 24.0° to 30.9°C. We find that differences in the Sr/Ca-SST relationships are correlated systematically with the average annual extension rate (ext) of each colony such that Sr/Ca (mmol/mol) = 11.82 (±0.13) - 0.058 (±0.004) * ext (mm/a) - 0.092 (±0.005) * SST (°C). This observation is consistent with previous reports of a link between coral Sr/Ca and growth rate. Verification of our growth-dependent Sr/Ca-SST calibration using a coral excluded from the calibration reconstructs the mean and seasonal amplitude of the actual recorded SST to within 0.3°C. Applying a traditional, nongrowth-dependent Sr/Ca-SST calibration derived from a modern Montastrea to the Sr/Ca ratios of a conspecific coral that grew during the early Little Ice Age (LIA) (400 years B.P.) suggests that Caribbean SSTs were >5°C cooler than today. Conversely, application of our growth-dependent Sr/Ca-SST calibration to Sr/Ca ratios derived from the LIA coral indicates that SSTs during the 5-year period analyzed were within error (±1.4°C) of modern values.