959 resultados para Spiral antennas.
Resumo:
The aim of the thesis is to theoretically investigate optical/plasmonic antennas for biosensing applications. The full 3-D numerical electromagnetic simulations have been performed by using finite integration technique (FIT). The electromagnetic properties of surface plasmon polaritons (SPPs) and the localized surface plasmons (LSPs) based devices are studied for sensing purpose. The surface plasmon resonance (SPR) biosensors offer high refractive index sensitivity at a fixed wavelength but are not enough for the detection of low concentrations of molecules. It has been demonstrated that the sensitivity of SPR sensors can be increased by employing the transverse magneto-optic Kerr effect (TMOKE) in combination with SPPs. The sensor based on the phenomena of TMOKE and SPPs are known as magneto-optic SPR (MOSPR) sensors. The optimized MOSPR sensor is analyzed which provides 8 times higher sensitivity than the SPR sensor, which will be able to detect lower concentration of molecules. But, the range of the refractive index detection is limited, due to the rapid decay of the amplitude of the MOSPR-signal with the increase of the refractive indices. Whereas, LSPs based sensors can detect lower concentrations of molecules, but their sensitivity is small at a fixed wavelength. Therefore, another device configuration known as perfect plasmonic absorber (PPA) is investigated which is based on the phenomena of metal-insulator-metal (MIM) waveguide. The PPA consists of a periodic array of gold nanoparticles and a thick gold film separated by a dielectric spacer. The electromagnetic modes of the PPA system are analyzed for sensing purpose. The second order mode of the PPA at a fixed wavelength has been proposed for the first time for biosensing applications. The PPA based sensor combines the properties of the LSPR sensor and the SPR sensor, for example, it illustrates increment in sensitivity of the LSPR sensor comparable to the SPR and can detect lower concentration of molecules due to the presence of nanoparticles.
Resumo:
Suprathermal electrons (>70 eV) form a small fraction of the total solar wind electron density but serve as valuable tracers of heliospheric magnetic field topology. Their usefulness as tracers of magnetic loops with both feet rooted on the Sun, however, most likely fades as the loops expand beyond some distance owing to scattering. As a first step toward quantifying that distance, we construct an observationally constrained model for the evolution of the suprathermal electron pitch-angle distributions on open field lines. We begin with a near-Sun isotropic distribution moving antisunward along a Parker spiral magnetic field while conserving magnetic moment, resulting in a field-aligned strahl within a few solar radii. Past this point, the distribution undergoes little evolution with heliocentric distance. We then add constant (with heliocentric distance, energy, and pitch angle) ad-hoc pitch-angle scattering. Close to the Sun, pitch-angle focusing still dominates, again resulting in a narrow strahl. Farther from the Sun, however, pitch-angle scattering dominates because focusing is effectively weakened by the increasing angle between the magnetic field direction and intensity gradient, a result of the spiral field. We determine the amount of scattering required to match Ulysses observations of strahl width in the fast solar wind, providing an important tool for inferring the large-scale properties and topologies of field lines in the interplanetary medium. Although the pitch-angle scattering term is independent of energy, time-of-flight effects in the spiral geometry result in an energy dependence of the strahl width that is in the observed sense although weaker in magnitude.
Resumo:
A new type of horn antenna for operation at 1.6 THz, that can be fabricated monolithically with 1/4-height micromachined waveguide, is described. Height, limitations imposed by the micromachining process are overcome by removing a tapered slot in the upper surface of a scalar horn, allowing the E-plane fields to extend outside the confines of the metallic structure before radiation, with a consequent reduction in E-plane beamwidth. 1.6 THz radiation pattern measurements for different designs show that, while there is scope for further optimisation, 3 dB beamwidths of 24 degrees and 17.5 degrees in the E- and H-planes, respectively, can be achieved.
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
The paper deals with an issue in space time block coding (STBC) design. It considers whether, over a time-selective channel, orthogonal STBC (O-STBC) or non-orthogonal STBC (NO-STBC) performs better. It is shown that, under time-selectiveness, once vehicle speed has risen above a certain value, NO-STBC always outperforms O-STBC across the whole SNR range. Also, considering that all existing NO-STBC schemes have been investigated under quasi-static channels only, a new simple receiver is derived for the NO-STBC system under time-selective channels.
Resumo:
A series of scale model measurements of transverse electromagnetic mode tapered slot antennas are presented. They show that the beam launched by this type of antenna is astigmatic. It is shown how an off-axis spherical mirror can be used to correct this astigmatism to allow efficient coupling to quasi-optical systems. A millimetre wave antenna and mirror combination is described and, with the aid of solid state noise diodes, the coupling of the launched beam to a quasi-optical spectrometer is shown to be in good agreement with that predicted by the scale model measurements.
Resumo:
This article considers cinematic time in James Benning’s film, casting a glance (2007), in relation to its subject, Robert Smithson’s 1970 earthwork Spiral Jetty, and his film of the same name. The radicalism of Smithson’s thinking on time has been widely acknowledged, and his influence continues to pervade contemporary artistic practice. The relationship of Benning’s films with this legacy may appear somewhat oblique, given their apparent phenomenological rendition of ‘real time’. However, closer examination of Benning’s formal strategies reveals a more complex temporal construction, characterized by uncertain intervals that interrupt the folding of cinematic time into the flow of consciousness. Smithson’s film uses cinematic analogy to gesture towards vast reaches of geological time; Benning’s film creates a simulated timescale to evoke the short history of the earthwork itself. Smithson’s embrace of the entropic was a counter-cultural stance at the end of the1960s, but under the shadow of ecological disaster, this orientation has come to appear melancholy and romantic rather than radical. Benning’s film returns the jetty to anthropic time, but raises questions about the ways we inhabit time. His practice of working with ‘borrowed time’ is particularly suited to the cultural and historical moment of his later work.
Resumo:
In this paper, we develop an energy-efficient resource-allocation scheme with proportional fairness for downlink multiuser orthogonal frequency-division multiplexing (OFDM) systems with distributed antennas. Our aim is to maximize energy efficiency (EE) under the constraints of the overall transmit power of each remote access unit (RAU), proportional fairness data rates, and bit error rates (BERs). Because of the nonconvex nature of the optimization problem, obtaining the optimal solution is extremely computationally complex. Therefore, we develop a low-complexity suboptimal algorithm, which separates subcarrier allocation and power allocation. For the low-complexity algorithm, we first allocate subcarriers by assuming equal power distribution. Then, by exploiting the properties of fractional programming, we transform the nonconvex optimization problem in fractional form into an equivalent optimization problem in subtractive form, which includes a tractable solution. Next, an optimal energy-efficient power-allocation algorithm is developed to maximize EE while maintaining proportional fairness. Through computer simulation, we demonstrate the effectiveness of the proposed low-complexity algorithm and illustrate the fundamental trade off between energy and spectral-efficient transmission designs.
Resumo:
We studied, for the first time, the near-infrared, stellar and baryonic Tully-Fisher relations for a sample of field galaxies taken from a homogeneous Fabry-Perot sample of galaxies [the Gassendi HAlpha survey of SPirals (GHASP) survey]. The main advantage of GHASP over other samples is that the maximum rotational velocities were estimated from 2D velocity fields, avoiding assumptions about the inclination and position angle of the galaxies. By combining these data with 2MASS photometry, optical colours, HI masses and different mass-to-light ratio estimators, we found a slope of 4.48 +/- 0.38 and 3.64 +/- 0.28 for the stellar and baryonic Tully-Fisher relation, respectively. We found that these values do not change significantly when different mass-to-light ratio recipes were used. We also point out, for the first time, that the rising rotation curves as well as asymmetric rotation curves show a larger dispersion in the Tully-Fisher relation than the flat ones or the symmetric ones. Using the baryonic mass and the optical radius of galaxies, we found that the surface baryonic mass density is almost constant for all the galaxies of this sample. In this study we also emphasize the presence of a break in the NIR Tully-Fisher relation at M(H,K) similar to -20 and we confirm that late-type galaxies present higher total-to-baryonic mass ratios than early-type spirals, suggesting that supernova feedback is actually an important issue in late-type spirals. Due to the well-defined sample selection criteria and the homogeneity of the data analysis, the Tully-Fisher relation for GHASP galaxies can be used as a reference for the study of this relation in other environments and at higher redshifts.
Resumo:
We present a map of the spiral structure of the Galaxy, as traced by molecular carbon monosulphide (CS) emission associated with IRAS sources which are believed to be compact H II regions. The CS line velocities are used to determine the kinematic distances of the sources in order to investigate their distribution in the galactic plane. This allows us to use 870 objects to trace the arms, a number larger than that of previous studies based on classical H II regions. The distance ambiguity of the kinematic distances, when it exists, is solved by different procedures, including the latitude distribution and an analysis of the longitude-velocity diagram. The study of the spiral structure is complemented with other tracers: open clusters, Cepheids, methanol masers and H II regions. The well-defined spiral arms are seen to be confined inside the corotation radius, as is often the case in spiral galaxies. We identify a square-shaped sub-structure in the CS map with that predicted by stellar orbits at the 4:1 resonance (four epicycle oscillations in one turn around the galactic centre). The sub-structure is found at the expected radius, based on the known pattern rotation speed and epicycle frequency curve. An inner arm presents an end with strong inwards curvature and intense star formation that we tentatively associate with the region where this arm surrounds the extremity of the bar, as seen in many barred galaxies. Finally, a new arm with concave curvature is found in the Sagitta to Cepheus region of the sky. The observed arms are interpreted in terms of perturbations similar to grooves in the gravitational potential of the disc, produced by crowding of stellar orbits.
Resumo:
The correlation between the breaks in the metallicity distribution and the corotation radius of spiral galaxies has been already advocated in the past and is predicted by a chemodynamical model of our Galaxy that effectively introduces the role of spiral arms in the star formation rate. In this work, we present photometric and spectroscopic observations made with the Gemini Telescope for three of the best candidates of spiral galaxies to have the corotation inside the optical disc: IC 0167, NGC 1042 and NGC 6907. We observed the most intense and well-distributed H ii regions of these galaxies, deriving reliable galactocentric distances and oxygen abundances by applying different statistical methods. From these results, we confirm the presence of variations in the gradients of metallicity of these galaxies that are possibly correlated with the corotation resonance.
Resumo:
Parkinson’s disease is a clinical syndrome manifesting with slowness and instability. As it is a progressive disease with varying symptoms, repeated assessments are necessary to determine the outcome of treatment changes in the patient. In the recent past, a computer-based method was developed to rate impairment in spiral drawings. The downside of this method is that it cannot separate the bradykinetic and dyskinetic spiral drawings. This work intends to construct the computer method which can overcome this weakness by using the Hilbert-Huang Transform (HHT) of tangential velocity. The work is done under supervised learning, so a target class is used which is acquired from a neurologist using a web interface. After reducing the dimension of HHT features by using PCA, classification is performed. C4.5 classifier is used to perform the classification. Results of the classification are close to random guessing which shows that the computer method is unsuccessful in assessing the cause of drawing impairment in spirals when evaluated against human ratings. One promising reason is that there is no difference between the two classes of spiral drawings. Displaying patients self ratings along with the spirals in the web application is another possible reason for this, as the neurologist may have relied too much on this in his own ratings.