973 resultados para Spinal Motor-neurons


Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the efficacy and side-effects of fentanyl and sufentanil combined with hyperbaric spinal bupivacaine in elective cesarean section. A prospective, randomized, double-blind study with 64 term parturients, distributed into 2 groups according to the opioid combined with hyperbaric bupivacaine 0.5% (10mg): GF - fentanyl (25 µg) and GS - sufentanil (5.0 µg). The latency and maximum sensory block level; degree and duration of motor block; duration and quality of analgesia; maternal-fetal repercussions were evaluated. This was an intention-to-treat analysis with a 5% significance level. The latency period, maximum sensory block level, motor block degree and perioperative analgesia were similar in both groups. Motor block and analgesia had a longer duration in the sufentanil group. Maternal adverse effects and neonatal repercussions were similar. The incidence of hypotension was higher in the fentanyl group. In both groups, there was a predominance of patients who were awake and either calm or sleepy. The addition of fentanyl and sufentanil to hyperbaric subarachnoid bupivacaine was shown to be effective for the performance of cesarean section, and safe for the mother and fetus. Analgesia was more prolonged with sufentanil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Descending pronociceptive pathways may be implicated in states of persistent pain. Paw skin incision is a well-established postoperative pain model that causes behavioral nociceptive responses and enhanced excitability of spinal dorsal horn neurons. The number of spinal c-Fos positive neurons of rats treated intrathecally with serotonin, noradrenaline or acetylcholine antagonists where evaluated to study the descending pathways activated by a surgical paw incision. Results: The number of c-Fos positive neurons in laminae I/II ipsilateral, lamina V bilateral to the incised paw, and in lamina X significantly increased after the incision. These changes: remained unchanged in phenoxybenzamine-treated rats; were increased in the contralateral lamina V of atropine-treated rats; were inhibited in the ipsilateral lamina I/II by 5-HT(1/2B/2C) (methysergide), 5-HT(2A) (ketanserin) or 5-HT(1/2A/2C/5/6/7) (methiothepin) receptors antagonists, in the ipsilateral lamina V by methysergide or methiothepin, in the contralateral lamina V by all the serotonergic antagonists and in the lamina X by LY 278,584, ketanserin or methiothepin. Conclusions: We conclude: (1) muscarinic cholinergic mechanisms reduce incision-induced response of spinal neurons inputs from the contralateral paw; (2) 5-HT(1/2A/2C/3) receptors-mediate mechanisms increase the activity of descending pathways that facilitates the response of spinal neurons to noxious inputs from the contralateral paw; (3) 5-HT(1/2A/2C) and 5-HT(1/2C) receptors increases the descending facilitation mechanisms induced by incision in the ipsilateral paw; (4) 5-HT(2A/3) receptors contribute to descending pronociceptive pathways conveyed by lamina X spinal neurons; (5) alpha-adrenergic receptors are unlikely to participate in the incision-induced facilitation of the spinal neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strategies aimed at improving spinal cord regeneration after trauma are still challenging neurologists and neuroscientists throughout the world. Many cell-based therapies have been tested, with limited success in terms of functional outcome. In this study, we investigated the effects of human dental pulp cells (HDPCs) in a mouse model of compressive spinal cord injury (SCI). These cells present some advantages, such as the ease of the extraction process, and expression of trophic factors and embryonic markers from both ecto-mesenchymal and mesenchymal components. Young adult female C57/BL6 mice were subjected to laminectomy at T9 and compression of the spinal cord with a vascular clip for 1 min. The cells were transplanted 7 days or 28 days after the lesion, in order to compare the recovery when treatment is applied in a subacute or chronic phase. We performed quantitative analyses of white-matter preservation, trophic-factor expression and quantification, and ultrastructural and functional analysis. Our results for the HDPC-transplanted animals showed better white-matter preservation than the DMEM groups, higher levels of trophic-factor expression in the tissue, better tissue organization, and the presence of many axons being myelinated by either Schwann cells or oligodendrocytes, in addition to the presence of some healthy-appearing intact neurons with synapse contacts on their cell bodies. We also demonstrated that HDPCs were able to express some glial markers such as GFAP and S-100. The functional analysis also showed locomotor improvement in these animals. Based on these findings, we propose that HDPCs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary neurodegeneration takes place in the surrounding tissue of spinal cord trauma and modifies substantially the prognosis, considering the small diameter of its transversal axis. We analyzed neuronal and glial responses in rat spinal cord after different degree of contusion promoted by the NYU Impactor. Rats were submitted to vertebrae laminectomy and received moderate or severe contusions. Control animals were sham operated. After 7 and 30 days post surgery, stereological analysis of Nissl staining cellular profiles showed a time progression of the lesion volume after moderate injury, but not after severe injury. The number of neurons was not altered cranial to injury. However, same degree of diminution was seen in the caudal cord 30 days after both severe and moderate injuries. Microdensitometric image analysis demonstrated a microglial reaction in the white matter 30 days after a moderate contusion and showed a widespread astroglial reaction in the white and gray matters 7 days after both severities. Astroglial activation lasted close to lesion and in areas related to Wallerian degeneration. Data showed a more protracted secondary degeneration in rat spinal cord after mild contusion, which offered an opportunity for neuroprotective approaches. Temporal and regional glial responses corroborated to diverse glial cell function in lesioned spinal cord. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study design: Cross-sectional study. Objectives: To observe if there is a relationship between the level of injury by the American Spinal Cord Injury Association (ASIA) and cortical somatosensory evoked potential (SSEP) recordings of the median nerve in patients with quadriplegia. Setting: Rehabilitation Outpatient Clinic at the university hospital in Brazil. Methods: Fourteen individuals with quadriplegia and 8 healthy individuals were evaluated. Electrophysiological assessment of the median nerve was performed by evoked potential equipment. The injury level was obtained by ASIA. N(9), N(13) and N(20) were analyzed based on the presence or absence of responses. The parameters used for analyzing these responses were the latency and the amplitude. Data were analyzed using mixed-effect models. Results: N(9) responses were found in all patients with quadriplegia with a similar latency and amplitude observed in healthy individuals; N(13) responses were not found in any patients with quadriplegia. N(20) responses were not found in C5 patients with quadriplegia but it was present in C6 and C7 patients. Their latencies were similar to healthy individuals (P > 0.05) but the amplitudes were decreased (P < 0.05). Conclusion: This study suggests that the SSEP responses depend on the injury level, considering that the individuals with C6 and C7 injury levels, both complete and incomplete, presented SSEP recordings in the cortical area. It also showed a relationship between the level of spinal cord injury assessed by ASIA and the median nerve SSEP responses, through the latency and amplitude recordings. Spinal Cord (2009) 47, 372-378; doi:10.1038/sc.2008.147; published online 20 January 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. Spontaneous spinal epidural hematoma (SEH) represents 0.3-0.9% of spinal epidural space-occupying lesions, and most surgeons advocate aggressive and early surgical intervention. In. this paper we describe a patient with SEH with sudden paraplegia. Case report. This 30-year-old man had experienced one prior episode of sudden dorsal pain two days before the current admission and while he waited medical attendance, his legs suddenly became weak, and immediately afterwards, he became completely paraplegic in minutes. The patient had complete paraplegia, analgesia below the T4 level and urinary retention. He had no anticoagulant agent and no coagulopathic disease. He was submitted to computerized tomography that demonstrated a dorsally located epidural hematoma extending from the T3 to the T6 level with spinal cord compression. A laminectomy from T3 to T7 was performed four hours after the onset of the symptom. In postoperative time the patient presented the partial sensorial recovery and motor force grade II. The patient was directed to a neurorehabilitation program and in the last medical evaluation he presented recovery for motor grade III-IV without pain. Conclusion. The SHE is rare, with severe neurological consequences for patients and early surgical treatment persist as essential for motor recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder affecting motoneurons and the SOD1(G93A) transgenic mice are widely employed to study disease physiopathology and therapeutic strategies. Despite the cellular and biochemical evidences of an early motor system dysfunction, the conventional behavioral tests do not detect early motor impairments in SOD1 mouse model. We evaluated early changes in motor behavior of ALS mice by doing the analyses of tail elevation, footprint, automatic recording of motor activities by means of an infrared motion sensor activity system and electrophysiological measurements in male and female wild-type (WT) and SOD1(G93A) mice from postnatal day (P) 20 up to endpoint. The classical evaluations of mortality, weight loss, tremor, rotometer, hanging wire and inclined plane were also employed. There was a late onset (after P90) of the impairments of classical parameters and the outcome varied between genders of ALS mice, being tremor, cumulative survival, weight loss and neurological score about 10 days earlier in male than female ALS mice and also about 20 days earlier in ALS males regarding rotarod and hanging wire performances. While diminution of hindpaw base was 10 days earlier in ALS males (P110) compared to females, the steep length decreased 40 days earlier in ALS females (P60) than ALS males. The automatic analysis of motor impairments showed substantial late changes (after P90) of motility and locomotion in the ALS females, but not in the ALS males. It was surprising that the scores of tail elevation were already decreased in ALS males and females by P40, reaching the minimal values at the endpoint. The electrophysiological analyses showed early changes of measures in the ALS mouse sciatic nerve, i.e., decreased values of amplitude (P40) and nerve conduction velocity (P20), and also an increased latency (P20) reaching maximal level of impairments at the late disease phase. The early changes were not accompanied by reductions of neuronal protein markers of neurofilament 200 and ChAT in the ventral part of the lumbar spinal cord of P20 and P60 ALS mice by means of Western blot technique, despite remarkable decreases of those protein levels in P120 ALS mice. In conclusion, early changes of motor behavior and electrophysiological parameters in ALS mouse model must be taken into attention in the analyses of disease mechanisms and therapeutic effects. (C) 2011 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To study increases in electromyographic (EMG) response from the right and left rectus femoris muscles of individuals with long-term cervical spinal cord injuries after EMG biofeedback treatment. Design Repeated measure trials compared EMG responses before and after biofeedback treatment in patients with spinal cord injuries. Main outcome measures The Neuroeducator was used to analyse and provide feedback of the EMG signal and to measure EMG response. Setting Department of Traumatic Orthopaedics, School of Medicine, University of Sao Paulo, Brazil. Participants Twenty subjects (three men and 17 women), between 21 and 49 years of age, with incomplete spinal cord injury at level C6 or higher (range C2 to C6). Of these subjects, 10 received their spinal cord injuries from motor vehicle accidents, one from a gunshot, five from diving, three from falls and one from spinal disc herniation. Results Significant differences were found in the EMG response of the right rectus femoris muscle between pre-initial (T1), post-initial (T2) and additional (T3) biofeedback treatment with the subjects in a sitting position [mean (standard deviation) T1: 26 mu V (29); T2: 67 mu V (50); T3: 77 mu V (62)]. The mean differences and 95% confidence intervals for these comparisons were as follows: T1 to T2, -40.7 (-53.1 to -29.4); T2 to T3, -9.6 (-26.1 to 2.3). Similar differences were found for the left leg in a sitting position and for both legs in the sit-to-stand condition. Conclusions The EMG responses obtained in this study showed that treatment involving EMG biofeedback significantly increased voluntary EMG responses from right and left rectus femoris muscles in individuals with spinal cord injuries. (C) 2010 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Design: Data mining of single nucleotide polymorphisms (SNPs) in gene pathways related to spinal cord injury (SCI). Objectives: To identify gene polymorphisms putatively implicated with neuronal damage evolution pathways, potentially useful to SCI study. Setting: Departments of Psychiatry and Orthopedics, Faculdade de Medicina, Universidade de Sao Paulo, Brazil. Methods: Genes involved with processes related to SCI, such as apoptosis, inflammatory response, axonogenesis, peripheral nervous system development and axon ensheathment, were determined by evaluating the `Biological Process` annotation of Gene Ontology (GO). Each gene of these pathways was mapped using MapViewer, and gene coordinates were used to identify their polymorphisms in the SNP database. As a proof of concept, the frequency of subset of SNPs, located in four genes (ALOX12, APOE, BDNF and NINJ1) was evaluated in the DNA of a group of 28 SCI patients and 38 individuals with no SC lesions. Results: We could identify a total of 95 276 SNPs in a set of 588 genes associated with the selected GO terms, including 3912 nucleotide alterations located in coding regions of genes. The five non-synonymous SNPs genotyped in our small group of patients, showed a significant frequency, reinforcing their potential use for the investigation of SCI evolution. Conclusion: Despite the importance of SNPs in many aspects of gene expression and protein activity, these gene alterations have not been explored in SCI research. Here we describe a set of potentially useful SNPs, some of which could underlie the genetic mechanisms involved in the post trauma spinal cord damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to pain and neurovegetative symptoms, patients with severe forms of complex regional pain syndrome (CRPS) develop a broad range of symptoms, including sensory disturbances, motor impairment and dystonic posturing. While most patients respond to medical therapy, some are considered refractory and become surgical candidates. To date, the most commonly used surgical procedure for CRPS has been spinal cord stimulation. This therapy often leads to important analgesic effects, but no sensory or motor improvements. We report on 2 patients with pain related to CRPS and severe functional deficits treated with motor cortex stimulation (MCS) who not only had significant analgesic effects, but also improvements in sensory and motor symptoms. In the long term (27 and 36 months after surgery), visual analog scale pain scores were improved by 60-70% as compared to baseline. There was also a significant increase in the range of motion in the joints of the affected limbs and an improvement in allodynia, hyperpathia and hypoesthesia. Positron emission tomography scan in both subjects revealed that MCS influenced regions involved in the circuitry of pain. Copyright (C) 2011 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF) is the most widely distributed neurotrophin in the CNS, where it plays several pivotal roles in synaptic plasticity and neuronal survival. As a consequence, BDNF has become a key target in the physiopathology of several neurological and psychiatric diseases. Recent studies have consistently reported altered levels of BDNF in the circulation (i.e., serum or plasma) of patients with major depression, bipolar disorder, Alzheimer`s disease, Huntington`s disease and Parkinson`s disease. Correlations between serum BDNF levels and affective, cognitive and motor symptoms have also been described. BDNF appears to be an unspecific biomarker of neuropsychiatric disorders characterized by neurodegenerative changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Facial motor evoked potential (FMEP) amplitude ratio reduction at the end of the surgery has been identified as a good predictor for postoperative facial nerve outcome. We sought to investigate variations in FMEP amplitude and waveform morphology during vestibular schwannoma (VS) resection and to correlate these measures with postoperative facial function immediately after surgery and at the last follow-up. Methods Intraoperative orbicularis oculi and oris muscles FMEP data from 35 patients undergoing surgery for VS resection were collected, then analysed by surgical stage: initial, dural opening, tumour dissection (TuDis), tumour resection (TuRes) and final. Findings Immediately after surgery, postoperative facial function correlated significantly with the FMEP amplitude ratio during TuDis, TuRes and final stages in both the orbicularis oculi (p = 0.003, 0.055 and 0.028, respectively) and oris muscles (p = 0.002, 0.104 and 0.014, respectively). At the last follow-up, however, facial function correlated significantly with the FMEP amplitude ratio only during the TuDis (p = 0.005) and final (p = 0.102) stages for the orbicularis oris muscle. At both time points, postoperative facial paresis correlated significantly with FMEP waveform deterioration in orbicularis oculi during the final stage (immediate, p = 0.023; follow-up, p = 0.116) and in orbicularis oris during the TuDis, TuRes and final stages (immediate, p = 0.071, 0.000 and 0.001, respectively; follow-up, p = 0.015, 0.001 and 0.01, respectively). Conclusions FMEP amplitude ratio and waveform morphology during VS resection seem to represent independent quantitative parameters that can be used to predict postoperative facial function. Event-to-baseline FMEP monitoring is quite useful to dictate when intraoperative changes in surgical strategy are warranted to reduce the chances of facial nerve injury.