982 resultados para Species Protection
Resumo:
Species distribution models (SDMs) studies suggest that, without control measures, the distribution of many alien invasive plant species (AIS) will increase under climate and land-use changes. Due to limited resources and large areas colonised by invaders, management and monitoring resources must be prioritised. Choices depend on the conservation value of the invaded areas and can be guided by SDM predictions. Here, we use a hierarchical SDM framework, complemented by connectivity analysis of AIS distributions, to evaluate current and future conflicts between AIS and high conservation value areas. We illustrate the framework with three Australian wattle (Acacia) species and patterns of conservation value in Northern Portugal. Results show that protected areas will likely suffer higher pressure from all three Acacia species under future climatic conditions. Due to this higher predicted conflict in protected areas, management might be prioritised for Acacia dealbata and Acacia melanoxylon. Connectivity of AIS suitable areas inside protected areas is currently lower than across the full study area, but this would change under future environmental conditions. Coupled SDM and connectivity analysis can support resource prioritisation for anticipation and monitoring of AIS impacts. However, further tests of this framework over a wide range of regions and organisms are still required before wide application.
Resumo:
Fungal pathogens are a frequent cause of opportunistic infections. They live as commensals in healthy individuals but can cause disease when the immune status of the host is altered. T lymphocytes play a critical role in pathogen control. However, specific Ags determining the activation and function of antifungal T cells remain largely unknown. By using an immunoproteomic approach, we have identified for the first time, to our knowledge, a natural T cell epitope from Candida albicans. Isolation and sequencing of MHC class II-bound ligands from infected dendritic cells revealed a peptide that was recognized by a major population of all Candida-specific Th cells isolated from infected mice. Importantly, human Th cells also responded to stimulation with the peptide in an HLA-dependent manner but without restriction to any particular HLA class II allele. Immunization of mice with the peptide resulted in a population of epitope-specific Th cells that reacted not only with C. albicans but also with other clinically highly relevant species of Candida including the distantly related Candida glabrata. The extent of the reaction to different Candida species correlated with their degree of phylogenetic relationship to C. albicans. Finally, we show that the newly identified peptide acts as an efficient vaccine when used in combination with an adjuvant inducing IL-17A secretion from peptide-specific T cells. Immunized mice were protected from fatal candidiasis. Together, these results uncover a new immune determinant of the host response against Candida ssp. that could be exploited for the development of antifungal vaccines and immunotherapies.
Resumo:
The protective effect of cations, especially Ca and Mg, against aluminum (Al) rhizotoxicity has been extensively investigated in the last decades. The mechanisms by which the process occurs are however only beginning to be elucidated. Six experiments were carried out here to characterize the protective effect of Mg application in relation to timing, location and crop specificity: Experiment 1 - Protective effect of Mg compared to Ca; Experiment 2 - Protective effect of Mg on distinct root classes of 15 soybean genotypes; Experiment 3 - Effect of timing of Mg supply on the response of soybean cvs. to Al; Experiment 4 - Investigating whether the Mg protective effect is apoplastic or simplastic using a split-root system; Experiment 5 - Protective effect of Mg supplied in solution or foliar spraying, and Experiment 6 - Protective effect of Mg on Al rhizotoxicity in other crops. It was found that the addition of 50 mmol L-1 Mg to solutions containing toxic Al increased Al tolerance in 15 soybean cultivars. This caused soybean cultivars known as Al-sensitive to behave as if they were tolerant. The protective action of Mg seems to require constant Mg supply in the external medium. Supplying Mg up to 6 h after root exposition to Al was sufficient to maintain normal soybean root growth, but root growth was not recovered by Mg addition 12 h after Al treatments. Mg application to half of the root system not exposed to Al was not sufficient to prevent Al toxicity on the other half exposed to Al without Mg in rooting medium, indicating the existence of an external protection mechanism of Mg. Foliar spraying with Mg also failed to decrease Al toxicity, indicating a possible apoplastic role of Mg. The protective effect of Mg appeared to be soybean-specific since Mg supply did not substantially improve root elongation in sorghum, wheat, corn, cotton, rice, or snap bean when grown in the presence of toxic Al concentrations.
Resumo:
To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola) was an Ultisol (Typic Paleudult) originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) (strip width 2 m), in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis) grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1) CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2) CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.
Resumo:
Introduction of the recombinant cosmid pME3090 into Pseudomonas fluorescens strain CHAO, a good biocontrol agent of various diseases caused by soilborne pathogens, increased three- to five-fold the production of the antibiotic metabolites pyoluteorin (Pit) and 2,4-diacetylphlorogIucinol (Phi) in vitro. Strain CHAO/pME3090 also overproduced Pit and Phi in the rhizosphere of wheat infected or not infected with Pythium ultimum. The biocontrol activity of the wild-type and recombinant Straitis was compared using various plant pathogen-host combinations in a gnotobiotic system. Antibiotic overproduction affected neither the protection of wheat against P. ultimum and Gaeumannomyces graminis var. tritici nor the growth of wheat plants. In contrast, strain CHA0/pME3090 showed an increased capacity to protect cucumber against Fusarium oxysporum f. sp. cucumerinum and Phomopsis sclerotioides, compared with the wild-type strain CHAO, The antibiotic overproducing strain protected tobacco roots significantly better against Thielaviopsis basicola than the wild-type strain but drastically reduced the growth of tobacco plants and was also toxic to the growth of sweet com. On King's B agar and on malt agar, the recombinant strain CHA0/pME3090 inhibited all pathogens more than did the parental strain CHAO. Synthetic Pit and Phi were toxic to all fungi tested. Tobacco and sweet com were more sensitive to synthetic Pit and Phi than were cucumber and wheat. There was no correlation between the sensitivity of the pathogens to the synthetic antibiotics and the degree of disease suppression by strain CHAO pME3090. However, there was a correlation between the sensitivity of the plants and the toxicity of the recombinant strain. We conclude that the plant species rather than the pathogen determines whether cosmid pME3090 in P. fluorescens strain CHAO leads to improved disease suppression.
Resumo:
This study aims to investigate the gas exchanges of different species of Annonaceae due to environmental variations provided by different types of crop protection. 'Araticum-de-terra-fria', 'araticum-mirim', 'biribá' and atemoya seedlings were cultived in three different crop protections: nursery, greenhouse and warm house. Gas exchanges were obtained in six plants, from 9:00 am to 11:00 am, with IRGA, LI-6400, at 180 Days After Transplanting. The different types of crop protection had a direct influence on gas exchanges of these species. Thus, nursery provided suitable conditions for 'araticum-de-terra-fria', 'araticum-mirim' and 'biribá', increasing their gas exchanges. To atemoya the best crop protection was the greenhouse.
Resumo:
Numerous studies assess the correlation between genetic and species diversities, but the processes underlying the observed patterns have only received limited attention. For instance, varying levels of habitat disturbance across a region may locally reduce both diversities due to extinctions, and increased genetic drift during population bottlenecks and founder events. We investigated the regional distribution of genetic and species diversities of a coastal sand dune plant community along 240 kilometers of coastline with the aim to test for a correlation between the two diversity levels. We further quantify and tease apart the respective contributions of natural and anthropogenic disturbance factors to the observed patterns. We detected significant positive correlation between both variables. We further revealed a negative impact of urbanization: Sites with a high amount of recreational infrastructure within 10 km coastline had significantly lowered genetic and species diversities. On the other hand, a measure of natural habitat disturbance had no effect. This study shows that parallel variation of genetic and species diversities across a region can be traced back to human landscape alteration, provides arguments for a more resolute dune protection, and may help to design priority conservation areas.
Resumo:
The main objective of the present study was to evaluate the effect of the sunhemp (Crotalaria juncea) host species on the protective ability of two mild strains of Passion fruit woodiness virus (PWV), named F-101 and F-144, which had failed to protect passion flowers (Passiflora edulis f. flavicarpa) in previous experiments. The nucleotide sequences of the capsid protein (CP) gene and the 3'-non-translated region (3'-NTR) of these mild strains and the severe strain of PWV-SP were compared to confirm their relationship. The results of two protective tests with sunhemp plants in the greenhouse and one test under field conditions showed that all plants infected with either mild strain were protected against infection and/or symptom expression of the severe strain of PWV-SP. Evaluation of the relative concentration of the mild strains in sun hemp leaves showed an apparent uniformity in virus distribution in the leaf tissues, different than that which was previously reported for these mild strains in passion flower leaves. These results agree with previous studies that showed the effect of the concentration of the protective strains and the host species in the protection process.
Resumo:
Tropical high altitude grasslands present several species with both microphyllous and highly sclerophyllous leaves, and co-occur in specific soil patches, thus exposed to identical environments. In this article we describe herbivory among co-occurring microphyllous species in a tropical high altitude grassland ecosystem of Serra do Cipó, Minas Gerais state, and we tested the effect of variable anatomic traits on leaf herbivory patterns. Leaf anatomical traits were investigated for Baccharis imbricata Heering , Lavoisiera imbricata DC. and L. subulata Triana (focal species). Herbivory was measured from branches and leaves of individual plants and compared among co-occurring species within one multispecific shrub patch and among L. subulata individuals from this patch and an adjacent monospecific patch. For all present plant species and individuals we estimated the proportion of leaves with different levels of area lost. For the focal species, six leaves were sorted and taken for histological sectioning, in order to allow precise measures of defensive structures. Relative mean leaf area lost differed significantly among the six species found in the multispecific patch. Lavoisiera subulata individuals were more attacked in the multispecific than in the monospecific patch. Leaf margin protection traits in both B. imbricata and L. imbricata showed significant effect against herbivory. Data suggest that some anatomic traits have direct effect against herbivory but their effect are not clearly perceptible among branches within individual plants or among plants within the same species.
Resumo:
This paper presents a taxonomic study of taxa of the red algae genus Herposiphonia (Ceramiales) occurring on Maracajaú Reef in the Coral Reefs Environmental Protection Area (CREPA - Área de Proteção Ambiental dos Recifes de Corais) in Rio Grande do Norte State, along the northeastern coast of Brazil. The CREPA comprises coastline and continental shelf areas of the municipalities of Touros, Rio do Fogo, and Maxaranguape and includes sand dunes, coastal lagoons, and the adjacent shoreline and offshore reefs. Detailed morphological studies were made, considering recent taxonomic criteria for species delimitation of Herposiphonia, and five species were identified: H. delicatula, H. nuda, H. parca, H. secunda, and H. tenella, thus increasing the number of species in the genus from three to six. Herposiphonia delicatula and H. parca represent new occurrences for Brazil, and H. nuda is reported for the first time for the Atlantic Ocean.
Resumo:
Ginkgo biloba extract (EGb) is a phytotherapeutic agent used for the treatment of ischemic and neurological disorders. Because the action of this important extract is not fully known, assays using different biological systems need to be performed. Red blood cells (RBC) are labeled with technetium-99m (Tc-99m) and used in nuclear medicine. The labeling depends on a reducing agent, usually stannous chloride (SnCl2). We assessed the effect of different concentrations of EGb on the labeling of blood constituents with Tc-99m, as sodium pertechnetate (3.7 MBq), and on the mobility of a plasmid DNA treated with SnCl2 (1.2 µg/ml) at room temperature. Blood was incubated with EGb before the addition of SnCl2 and Tc-99m. Plasma (P) and RBC were separated and precipitated with trichloroacetic acid, and soluble (SF-P and SF-RBC) and insoluble (IF-P and IF-RBC) fractions were isolated. The plasmid was incubated with Egb, SnCl2 or EGb plus SnCl2 and agarose gel electrophoresis was performed. The gel was stained with ethidium bromide and the DNA bands were visualized by fluorescence in an ultraviolet transilluminator system. EGb decreased the labeling of RBC, IF-P and IF-RBC. The supercoiled form of the plasmid was modified by treatment with SnCl2 and protected by 40 mg/ml EGb. The effect of EGb on the tested systems may be due to its chelating action with the stannous ions and/or pertechnetate or to the capability to generate reactive oxygen species that could oxidize the stannous ion.
Resumo:
Nowadays, the re-refining of the used lube oils has gained worldwide a lot of attention due to the necessity for added environmental protection and increasingly stringent environmental legislation. One of the parameters determining the quality of the produced base oils is the composition of feedstock. Estimation of the chemical composition of the used oil collected from several European locations showed that the hydrocarbon structure of the motor oil is changed insignificantly during its operation and the major part of the changes is accounted for with depleted oil additives. In the lube oil re-refining industry silicon, coming mainly from antifoaming agents, is recognized to be a contaminant generating undesired solid deposits in various locations in the re-refining units. In this thesis, a particular attention was paid to the mechanism of solid product formation during the alkali treatment process of silicon-containing used lube oils. The transformations of a model siloxane, tetramethyldisiloxane (TMDS), were studied in a batch reactor at industrially relevant alkali treatment conditions (low temperature, short reaction time) using different alkali agents. The reaction mechanism involving solid alkali metal silanolates was proposed. The experimental data obtained demonstrated that the solids were dominant products at low temperature and short reaction time. The liquid products in the low temperature reactions were represented mainly by linear siloxanes. The prolongation of reaction time resulted in reduction of solids, whereas both temperature and time increase led to dominance of cyclic products in the reaction mixture. Experiments with the varied reaction time demonstrated that the concentration of cyclic trimer being the dominant in the beginning of the reaction diminished with time, whereas the cyclic tetramer tended to increase. Experiments with lower sodium hydroxide concentration showed the same effect. In addition, a decrease of alkali agent concentration in the initial reaction mixture accelerated TMDS transformation reactions resulting in solely liquid cyclic siloxanes yields. Comparison of sodium and potassium hydroxides applied as an alkali agent demonstrated that potassium hydroxide was more efficient, since the activation energy in KOH presence was almost 2-fold lower than that for sodium hydroxide containing reaction mixture. Application of potassium hydroxide for TMDS transformation at 100° C with 3 hours reaction time resulted in 20 % decrease of solid yields compared to NaOH-containing mixture. Moreover, TMDS transformations in the presence of sodium silanolate applied as an alkali agent led to formation of only liquid products without formation of the undesired solids. On the basis of experimental data and the proposed reaction mechanism, a kinetic model was developed, which provided a satisfactory description of the experimental results. Suitability of the selected siloxane as a relevant model of industrial silicon-containing compounds was verified by investigation of the commercially available antifoam agent in base-catalyzed conditions.
Resumo:
Mitochondrial ion transport, oxidative phosphorylation, redox balance, and physical integrity are key factors in tissue survival following potentially damaging conditions such as ischemia/reperfusion. Recent research has demonstrated that pharmacologically activated inner mitochondrial membrane ATP-sensitive K+ channels (mitoK ATP) are strongly cardioprotective under these conditions. Furthermore, mitoK ATP are physiologically activated during ischemic preconditioning, a procedure which protects against ischemic damage. In this review, we discuss mechanisms by which mitoK ATP may be activated during preconditioning and the mitochondrial and cellular consequences of this activation, focusing on end-effects which may promote ischemic protection. These effects include decreased loss of tissue ATP through reverse activity of ATP synthase due to increased mitochondrial matrix volumes and lower transport of adenine nucleotides into the matrix. MitoK ATP also decreases the release of mitochondrial reactive oxygen species by promoting mild uncoupling in concert with K+/H+ exchange. Finally, mitoK ATP activity may inhibit mitochondrial Ca2+ uptake during ischemia, which, together with decreased reactive oxygen release, can prevent mitochondrial permeability transition, loss of organelle function, and loss of physical integrity. We discuss how mitochondrial redox status, K+ transport, Ca2+ transport, and permeability transitions are interrelated during ischemia/reperfusion and are determinant factors regarding the extent of tissue damage.
Resumo:
Glutathione is the major intracellular antioxidant thiol protecting mammalian cells against oxidative stress induced by oxygen- and nitrogen-derived reactive species. In trypanosomes and leishmanias, trypanothione plays a central role in parasite protection against mammalian host defence systems by recycling trypanothione disulphide by the enzyme trypanothione reductase. Although Kinetoplastida parasites lack glutathione reductase, they maintain significant levels of glutathione. The aim of this study was to use Leishmania donovani trypanothione reductase gene mutant clones and different Leishmania species to examine the role of these two individual thiol systems in the protection mechanism against S-nitroso-N-acetyl-D,L-penicillamine (SNAP), a nitrogen-derived reactive species donor. We found that the resistance to SNAP of different species of Leishmania was inversely correlated with their glutathione concentration but not with their total low-molecular weight thiol content (about 0.18 nmol/10(7) parasites, regardless Leishmania species). The glutathione concentration in L. amazonensis, L. donovani, L. major, and L. braziliensis were 0.12, 0.10, 0.08, and 0.04 nmol/10(7) parasites, respectively. L. amazonensis, that have a higher level of glutathione, were less susceptible to SNAP (30 and 100 µM). The IC50 values of SNAP determined to L. amazonensis, L. donovani, L. major, and L. braziliensis were 207.8, 188.5, 160.9, and 83 µM, respectively. We also observed that L. donovani mutants carrying only one trypanothione reductase allele had a decreased capacity to survive (~40%) in the presence of SNAP (30-150 µM). In conclusion, the present data suggest that both antioxidant systems, glutathione and trypanothione/trypanothione reductase, participate in protection of Leishmania against the toxic effect of nitrogen-derived reactive species.
Resumo:
Changes in the abundance of top predators have brought about notable, cascading effects in ecosystems around the world. In this thesis, I examined several potential trophic cascades in boreal ecosystems, and their separate interspecific interactions. The main aim of the thesis was to investigate whether predators in the boreal forests have direct or indirect cascading effects on the lower trophic levels. First, I compared the browsing effects of different mammalian herbivores by excluding varying combinations of voles, hares and cervids from accessing the seedlings of silver birch (Betula pendula), Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Additionally, I studied the effect of simulated predation risk on vole browsing by using auditory cues of owls. Moving upwards on the trophic levels, I examined the intraguild interactions between the golden eagle (Aquila chrysaetos), and its mesopredator prey, the red fox (Vulpes vulpes) and the pine marten (Martes martes). To look at an entire potential trophic cascade, I further studied the combined impacts of eagles and mesopredators on the black grouse (Tetrao tetrix) and the hazel grouse (Tetrastes bonasia), predicting that the shared forest grouse prey would benefit from eagle presence. From the tree species studied, birch appears to be the most palatable one for the mammalian herbivores. I observed growth reductions in the presences of cervids and low survival associated with hares and voles, which suggests that they all weaken regeneration in birch stands. Furthermore, the simulated owl predation risk appeared to reduce vole browsing on birches in late summer, although the preferred grass forage is then old and less palatable. Browsing by voles and hares had a negative effect on the condition and survival of Scots pine, but in contrast, the impact of mammalian herbivores on spruce was found to be small, at least when more preferred food is available. I observed that the presence of golden eagles had a negative effect on the abundance of adult black grouse but a positive, protective effect on the proportion of juveniles in both black grouse and hazel grouse. Yet, this positive effect was not dependent on the abundance foxes or martens, nor did eagles seem to effectively decrease the abundance of these mesopredators. Conversely, the protection effect on grouse could arise from fear effects and also be mediated by other mesopredators. The results of this thesis provide important new information about trophic interactions in the boreal food webs. They highlight how different groups of mammalian herbivores vary in their effects on the growth and condition of different tree seedlings. Lowered cervid abundances could improve birch regeneration, which indirectly supports the idea that the key predators of cervids could cause cascading effects also in Fennoscandian forests. Owls seem to reduce vole browsing through an intimidation effect, which is a novel result of the cascading effects of owl vocalisation and could even have applications for protecting birch seedlings. In the third cascade examined in this thesis, I found the golden eagle to have a protective effect on the reproducing forest grouse, but it remains unclear through which smaller predators this effect is mediated. Overall, the results of this thesis further support the idea that there are cascading effects in the forests of Northern Europe, and that they are triggered by both direct and non‐lethal effects of predation.