988 resultados para Special Portland cement
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2016.
Resumo:
An economical solution for cementing oil wells is the use of pre-prepared dry mixtures containing cement and additives. The mixtures may be formulated, prepared and transported to the well where is added water to be pumped.Using this method, becomes dispensable to prepare the cement mixes containing additives in the cementing operation, reducing the possibility of error. In this way, the aim of this work is to study formulations of cement slurries containing solid additives for primary cementing of oil wells onshore for typical depths of 400, 800 and 1,200 meters. The formulations are comprised of Special Class Portland cement, mineral additions and solids chemical additives.The formulated mixtures have density of 1.67 g / cm ³ (14.0 lb / gal). Their optimization were made through the analysis of the rheological parameters, fluid loss results, free water, thickening time, stability test and mechanical properties.The results showed that mixtures are in conformity the specifications for cementing oil wells onshore studied depths
Resumo:
Although there are a wide variety of additives that act in fresh state, to adjust the properties of cement, there is also a search by additions that improve the tenacity of the cement in the hardened state. This, in turn, can often be increased by inserting fibers, which act on the deflection of microcracks. This study aimed to use a microfiber glass wool (silica-based) as an additive reinforcing the cement matrix, improving the rupture tenacity, in order to prevent the propagation of microcracks in the cement sheath commonly found in oil wells submitted to high temperatures. The fibers were added at different concentrations, 2 to 5% (BWOC) and varied average sizes, grinding for 90 s, 180 s, 300 s, 600 s. The cement slurries were made with a density of 1,90 g/ cm3 (15,6 lb/gal), using Portland cement CPP- Special Class as the hydraulic binder and 40% silica flour. The characterization of the fiber was made by scanning electron microscopy (SEM), particle size by sieving, X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetry (TG / DTG). Were performed technological tests set by the API (American Petroleum Institute) by rheology, stability, free water, compressive strength, as well as testing rupture energy, elastic modulus and permeability. The characterization results showed good thermal stability of the microfiber glass wool for application in oil wells submitted to steam injection and, also, that from the particle size data, it was possible to suggest that microfibers milled up to 300 s, are ideal to act as reinforcement to the cement slurries. The rheological parameters, there was committal of plastic viscosity when larger lengths were inserted of microfiber (F90). The values obtained by free water and stability were presented according to API. The mechanical properties, the incorporation of microfiber to the cement slurries gave better rupture tenacity, as compared to reference cement slurries. The values of compressive strength, elastic modulus and permeability have been maintained with respect to the reference cement slurries. Thus, cement slurries reinforced with microfiber glass wool can ensure good application for cementing oil wells submitted to steam injection, which requires control of microcracks, due to the thermal gradients
Resumo:
This work was done with the objective of studying some physical and mechanical characteristics of the sugarcane bagasse ash added to a soil-cement mixture, in order to obtain an alternative construction material. The sugarcane bagasse ash pre-treatment included both sieving and grinding, before mixing with soil and cement. Different proportions of cement-ash were tested by determining its standard consistence and its compressive resistance at 7 and 28 days age. The various treatments were subsequently applied to the specimens molded with different soil-cement-ash mixtures which in turns were submitted to compaction, unconfined compression and water absorption laboratory tests. The results showed that it is possible to replace up to 20% of Portland cement by sugarcane bagasse ash without any damage to the mixture's compressive strength.
Resumo:
The aim of this research was to study the effect of chemical additives (lime and Portland cement) associated with sodium silicate on soil in order to obtain compressed soil bricks. Mini panels were constructed with such bricks being their physical and mechanical characteristics determined in laboratory conditions and their behavior evaluated through the association of destructive and non-destructive methods. For this purpose a sandy soil and a finely divided one were added to Portland cement and lime in the dosage of 6% and 10% taken in dry weight basis in relation to the dry soil. The sodium silicate dosage of 4% was also taken in dry weight basis in relation to the dry soil-cement or to the dry soil-lime. The compressed soil bricks were cured in a humidity chamber for 7; 28; 56 and 91 days. The bricks were laid on the fourteenth day to form prismatic mini panels each one with four layers of bricks. After 28; 56 and 91 days the mini panels were submitted to both; ultrasonic and compressive tests to determine its elastic properties (dynamic modulus) and the compressive resistance. The best results in terms of compressive strength, water absorption capacity or dynamic elastic modulus, were reached by the sandy soil added to 10% of Portland cement or lime associated with sodium silicate.
Resumo:
Atualmente, o aproveitamento de resíduos na construção civil tem sido estimulado, uma vez que esse setor apresenta-se como um dos maiores consumidores de materiais naturais em seus processos e produtos. As cinzas ocupam lugar de destaque entre os resíduos agroindustriais por resultarem de processos de geração de energia. Grande parte dessas cinzas possui atividade pozolânica, podendo ser utilizada como substituto parcial do cimento Portland, resultando numa economia significativa de energia e custo. Este trabalho faz parte de uma pesquisa mais ampla, a qual busca avaliar a viabilidade técnica da cinza da casca da castanha de caju (CCCC) como adição mineral em matrizes de cimento Portland, como também, propor uma metodologia de análise de cinzas agroindustriais. Aplicou-se a técnica de difratometria de raios X para avaliar a reatividade do hidróxido de cálcio pela cinza da casca da castanha de caju em pastas, empregaram-se teores de substituição entre 2,5 e 30,0% e os difratogramas das pastas foram comparados com os das pastas confeccionadas com sílica ativa, executados sobre as mesmas condições de ensaio. Os resultados apontam para a ausência de reatividade pozolânica da CCCC com o cimento Portland.
Resumo:
In repair works of reinforced concrete, patch repairs tend to crack in the interfacial zone between the mortar and the old concrete. This occurs basically due to the high degree of restriction that acts on a patch repair. For this reason, the technology of patch repair needs to be the subject of a discussion involving professionals who work with projects, construction maintenance and mix proportioning of repair mortars. In the present work, a study is presented on the benefits that the ethylene vinyl acetate copolymer (EVA) and acrylate polymers can provide in the mix proportioning of a repair mortar with respect to compressive, tensile and direct-shear bond strength. The results indicated that the increase in bond strength and the reduction in the influence of the deficiency in Curing conditioning are the main contributions offered by the polymers studied here. (C) 2009 Elsevier, Ltd. All rights reserved.
Resumo:
This study focuses on the technical feasibility of the utilization of waste from the cutting of granite to adjust the chemical composition of slag from steelworks LD, targeting the addition of clinker Portland cement. For this, chemical characterization of the waste, its mixture and fusion was performed, obtaining a CaO/SiO(2) relationship of around 0.9 to 1.2 for the steelworks slag. We selected samples of the waste, mixed, melted and cooled in water and in the oven. Samples cooled in water, after examining with X-ray difractrograms, had been predominantly amorphous. For samples cooled in the furnace, which had vitreous, there was the presence of mineralogical phases Akermanita and Gehlenita, which is considered as the ideal stage for the mineral water activity of the slag. The adjustment of the chemical composition of the slag from steel works by the addition of waste granite was efficient, transforming the waste into a product that is the same as blast furnace slag and can be used in the manufacture of cement.
Resumo:
The aim of this work is to study the reaction rate and the morphology of the intermediary reaction products during reduction of iron ore, when iron ore and carbonaceous material are agglomerated together as a carbon composite iron ore pellet. The reaction was performed at high temperatures, and in order to avoid heat transfer constraints small size samples were used. The carbonaceous materials employed were coke breeze and pure graphite. Portland cement was employed as a binder, and the pellets diameter was 5.2 mm. The experimental technique involved the measurement of the pellets weight loss, as well as interruption of the reaction at different stages in order to submit the partially reduced pellet to scanning electron microscopy. It has been observed that above 1523 K there is the formation of liquid slag inside the pellets, which partially dissolves iron oxides. The apparent activation energies obtained were 255 kJ/mol for coke breeze containing pellets, and 230 kJ/mol for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
Cementitious stabilization of aggregates and soils is an effective technique to increase the stiffness of base and subbase layers. Furthermore, cementitious bases can improve the fatigue behavior of asphalt surface layers and subgrade rutting over the short and long term. However, it can lead to additional distresses such as shrinkage and fatigue in the stabilized layers. Extensive research has tested these materials experimentally and characterized them; however, very little of this research attempts to correlate the mechanical properties of the stabilized layers with their performance. The Mechanistic Empirical Pavement Design Guide (MEPDG) provides a promising theoretical framework for the modeling of pavements containing cementitiously stabilized materials (CSMs). However, significant improvements are needed to bring the modeling of semirigid pavements in MEPDG to the same level as that of flexible and rigid pavements. Furthermore, the MEPDG does not model CSMs in a manner similar to those for hot-mix asphalt or portland cement concrete materials. As a result, performance gains from stabilized layers are difficult to assess using the MEPDG. The current characterization of CSMs was evaluated and issues with CSM modeling and characterization in the MEPDG were discussed. Addressing these issues will help designers quantify the benefits of stabilization for pavement service life.
Resumo:
The mechanical properties of Portland cement are closely related to the chemical composition of the clinker and particularly to the concentration of tricalcium silicate, C3S. In the industrial production process, the clinker must be rapidly quenched, to avoid its decomposition into dicalcium silicate and lime and also to avoid the transformation from higher temperature phases to lower temperature phases. This study investigated the kinetics of thermal decomposition of the C3S. Samples of laboratory-made C3S were thermally treated under specific conditions to determine the continuous cooling transformation (CCT) diagram of the material. The CCT diagram of the C3S showed decomposition rates with values that were much higher than the values traditionally accepted in the literature.
Resumo:
The present randomized, controlled prospective study evaluated the histomorphological response of human dental pulps capped with two grey mineral trioxide aggregate (MTA) compounds. Pulp exposures were performed on the occlusal floor of 40 human permanent pre-molars. The pulp was capped either with ProRoot (Dentsply) or MTA-Angelus (Angelus) and restored with zinc oxide eugenol cement. After 30 and 60 days, teeth were extracted and processed for histological examination and the effects on the pulp were scored. The data were subjected to Kruskal-Wallis and Conover tests (alpha = 0.05). In five out of the 40 teeth bacteria were present in pulp tissue. No significant difference was observed between the two materials (P > 0.05) in terms of overall histological features (hard tissue bridge, inflammatory response, giant cells and particles of capping materials). Overall, 94% and 88% of the specimens capped with MTA-Angelus and ProRoot, respectively, showed either total or partial hard tissue bridge formation (P > 0.05). Both commercial materials ProRoot (Dentsply) and MTA-Angelus (Angelus) produced similar responses in the pulp when used for pulp capping in intact, caries-free teeth.
Resumo:
Introduction: An experimental mineral trioxide aggregate sealer (MTAS) has been developed for use as a root canal sealer. The aim of this study was to evaluate the setting time, pH, and calcium ion release of MTAS compared with white Portland cement (CPB-40; Votorantin Cimentos, Camargo Correa SA, Pedro Leopoldo, MG, Brazil), white MTA Angelus (MTA; Angelus, Londrina, PR, Brazil), and AH Plus (Dentsply DeTrey, Konstanz, Germany). Methods: For the evaluation of setting time, each material was analyzed using Gilmore-type needles. Polyethylene tubes with the materials were immersed in distilled water for the measurement of pH (digital pH meter) and calcium release (atomic absorption spectrophotometry). The evaluations were performed at 3, 6, 12, 24, and 48 hours and 7, 14, and 28 days. Data were analyzed by analysis of variance and the Tukey test at 5% significance level. Results: MTAS showed higher calcium release at all experimental periods, a greater increase in pH up to 48 hours and the longest setting time. Conclusions: MTAS presented favorable properties for its indication as a root canal sealer. (J Endod 2011;37:844-846)
Resumo:
Objective. The aim of this study was to evaluate the pH, calcium release, setting time, and solubility of two commercially available mineral trioxide aggregate (MTA) cements (white MTA Angelus and MTA Bio), and of three experimental cements (light-cured MTA, Portland cement with 20% bismuth oxide and 5% calcium sulfate, and an epoxy resin-based cement). Study design. For evaluation of pH and calcium ion release, polyethylene tubes with 1.0 mm internal diameter and 10.0 mm length were filled with the cements and immediately immersed in flasks containing 10 mL deionized water. After 3, 24, 72, and 168 hours, the tubes were removed and the water from the previous container was measured for its pH and calcium content with a pH meter and an atomic absorption spectrophotometer. For analysis of the setting time, Gilmore needles weighing 100 g and 456.5 g were used, in accordance with the American Society for Testing and Materials specification no. C266-03. Solubility of each cement was also tested. Results. All the cements were alkaline and released calcium ions, with a declining trend over time. After 3 hours, Portland cement + bismuth oxide and MTA Bio had the highest pH and light-cured MTA the lowest. After 1 week, MTA Bio had the highest pH and light-cured MTA and epoxy resin-based cement the lowest. Regarding calcium ion release, after 3 hours, Portland cement + bismuth oxide showed the highest release. After 1 week, MTA Bio had the highest. Epoxy resin-based cement and light-cured MTA had the lowest calcium release in all evaluation periods. Regarding setting times, white MTA Angelus and MTA Bio had the shortest, Portland cement + bismuth oxide had an intermediate setting time, and the epoxy resin-based cement had the longest. The materials that showed the lowest solubility values were the epoxy resin-based cement, Portland cement + bismuth oxide, and light-cured MTA. The highest solubility values were presented in white MTA Angelus and MTA Bio. Conclusions. The white MTA Angelus and MTA Bio had the shortest setting times, higher pH and calcium ion release, and the highest solubility. In contrast, the epoxy resin-based cement and light-cured MTA showed lower values of solubility, pH, and calcium ion release. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 110: 250-256)
Resumo:
Objective. The aim of the present study was to evaluate the radiopacity of 5 root end filling materials (white MTA Angelus, MTA Bio, light-cured MTA, Sealepox RP, and Portland cement clinker with bismuth oxide and calcium sulfate). Method. Five specimens, 10 mm in diameter and 1 mm in thickness according to specification ISO 6876: 2001 were fabricated from each material and radiographed using Insigth occlusal films close to a graduated aluminum step-wedge (2 to 16 mm in thickness). Radiographs were digitized and compared to the aluminum step-wedge. The radiographic density data were converted into millimeters of aluminum (mm Al), using the Digora 1.51 software. Results were evaluated statistically using the analysis of variance (ANOVA) followed by Tukey test. The level of significance was set at 5% (P<.05%). Results. Radiopacity values ranged from 1.21 mm Al (light-cured MTA) to 6.45 mm Al (MTA Angelus). Comparison between materials showed significant difference (P<.05) between MTA Angelus and all other materials, between Sealepox RP and MTA Bio, and between light-cured MTA and Portland cement clinker. Light-cured MTA was significantly less radiopaque than all other materials. No significant difference (P>.05) was found between MTA Bio and Portland cement clinker. Conclusions. All retrograde filling materials evaluated showed greater radiopacity than dentin. All the materials, except light-cured MTA met the minimum radiopacity standards of 3 mm Al recognized by the ISO 6876: 2001 and ADA n.57. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e35-e38)