911 resultados para Spatial Frequency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of high energetic electrons (>= 11.7 eV) in a modified industrial confined dual-frequency capacitively coupled RF discharge (Exelan, Lam Research Inc.), operated at 1.937 MHz and 27.118 MHz, is investigated by means of phase resolved optical emission spectroscopy. Operating in a He-O-2. plasma with small rare gas admixtures the emission is measured, with one-dimensional spatial resolution along the discharge axis. Both the low and high frequency RF cycle are resolved. The diagnostic is based on time dependent measurements of the population densities of specifically chosen excited rare gas states. A time dependent model, based on rate equations, describes the dynamics of the population densities of these levels. Based on this model and the comparison of the excitation of various rare gas states, with different excitation thresholds, time and space resolved electron temperature, propagation velocity and qualitative electron density as well as electron energy distribution functions are determined. This information leads to a better understanding of the dual-frequency sheath dynamics and shows, that separate control of ion energy and electron density is limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial structures of plasma parameters in a radio-frequency inductively coupled magnetic neutral loop discharge are investigated under various parameter variations using spatially resolved Langmuir probe measurements. A strong coupling between the plasma production region, in the neutral loop (NL) plane, and the axially remote substrate region is observed. The two regions are connected through the separatrices and therefore, spatial profiles in the substrate region are strongly influenced by the plasma production region and the structure of the separatrices. The electron temperature in the plasma production region peaks in the centre of the NL while the maximum in electron density is shifted radially inwards due to diffusion. Details of the structures in both regions, the production region and the substrate region, are determined through the position of the NL and the gradient of the inhomogeneous magnetic field around the NL confinement region. Parameter combinations are found providing higher plasma densities and better uniformity than in common inductively coupled plasmas without applying an additional magnetic field. The uniformity can be further improved using temporal variations of the magnetic field structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex dynamics of radio-frequency driven atmospheric pressure plasma jets is investigated using various optical diagnostic techniques and numerical simulations. Absolute number densities of ground state atomic oxygen radicals in the plasma effluent are measured by two-photon absorption laser induced fluorescence spectroscopy (TALIF). Spatial profiles are compared with (vacuum) ultra-violet radiation from excited states of atomic oxygen and molecular oxygen, respectively. The excitation and ionization dynamics in the plasma core are dominated by electron impact and observed by space and phase resolved optical emission spectroscopy (PROES). The electron dynamics is governed through the motion of the plasma boundary sheaths in front of the electrodes as illustrated in numerical simulations using a hybrid code based on fluid equations and kinetic treatment of electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inductively coupled radio-frequency plasmas can be operated in two distinct modes. At low power and comparatively low plasma densities the plasma is sustained in capacitive mode (E-mode). As the plasma density increases a transition to inductive mode (H-mode) is observed. This transition region is of particular interest and governed by non-linear dynamics, which under certain conditions results in structure formation with strong spatial gradients in light emission. These modes show pronounced differences is various measureable quantities e.g. electron densities, electron energy distribution functions, ion energy distribution functions, dynamics of optical light emission. Here the transition from E- to H- mode in an oxygen containing inductively coupled plasma (ICP) is investigated using space and phase resolved optical emission spectroscopy (PROES). The emission, measured phase resolved, allows investigation of the electron dynamics within the rf cycle, important for understanding the power coupling and ionization mechanisms in the discharge. The temporal variation of the emission reflects the dynamics of relatively high-energy electrons. It is possible to distinguish between E- and H-mode from the intensity and temporal behaviour of the emission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A pin diode-loaded active doubly periodic flat strip FSS is shown to act as a dynamic screen. It is shown that by means of d.c. bias control, we can utilize the screen in, (1) transmission mode as a dual band electromagnetic shutter, or with the inclusion of a ground plane in reflection mode, (is (2) it dual band refection canceller. (3) an amplitude shift keying (ASK) spatial modulator. The properties of the FSS are characterized using a specially designed parallel plate waveguide simulator that permits normal incidence excitation of the FSS under test. (C) 2009 Wiley Periodicals. Inc. Microwave Opt Technol Lett 51: 2059-2061, 2009; Published online in Wiley Inter-Science (www. interscience.wiley.com). DOI 10.1002/mop.24547

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. It has been argued that the threshold for detecting frequency-doubling (FD) technology perimeter stimuli differs from the threshold for perceiving spatial structure (pattern) in the same targets. Thresholds for perceiving spatial structure have typically been assessed using orientation-identification experiments. The authors investigated the influence of orientation, edge profile, and psychophysical method on the origin of the reported differences in detection and orientation-identification thresholds for FD gratings.

METHODS. Detection and orientation-identification thresholds were determined in 12 observers with the use of FD stimuli (0.25 cyc/deg, 25 Hz) presented centrally and at 15° eccentricity. Edge profile (square- and Gaussian-windowed) and orientation (horizontal, vertical, and oblique) were independently modified. Detection thresholds were also measured for spatially uniform flickering targets (25 Hz). Orientation-identification thresholds using a two-alternative forced choice (2-AFC) and a two-interval forced choice (2-IFC) method were also compared in five experienced observers.

RESULTS. Orientation-identification and detection thresholds did not significantly differ under any condition tested. Orientation-identification thresholds obtained with 2-AFC were not significantly different from those obtained with 2-IFC. Thresholds for spatially uniform flicker were significantly lower than for FD stimuli.

CONCLUSIONS. The authors found that orientation-identification and detection thresholds for FD gratings did not differ and argue that recent findings to the contrary arise from the inappropriate use of spatially uniform flicker targets as alternatives in 2-IFC experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A prototype X-band scale model for a quasi-optical three-port circulator utilising a double-layer circularly polarising frequency selective surface is proposed. The operating principles and measured characteristics of the device are discussed. A prototype device operating at 9.9 GHz has been built and validated experimentally. The port 1 to port 2 insertion loss of the quasi-circulator has been measured to be 2 dB, while port 1 to port 3 isolation is 16 dB. It is demonstrated that port 1 to 3 isolation can be increased to 25 dB by embedding the quasi-circulator in a feedforward setup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent experimental study, the beam intensity profile of the Vulcan petawatt laser beam was measured; it was found that only 20% of the energy was contained within the full width at half maximum of 6.9 mu m and 50% within 16 mu m, suggesting a long-tailed non-Gaussian transverse beam profile. A q-Gaussian distribution function was suggested therein to reproduce this behavior. The spatial beam profile dynamics of a q-Gaussian laser beam propagating in relativistic plasma is investigated in this article. A non-paraxial theory is employed, taking into account nonlinearity via the relativistic decrease of the plasma frequency. We have studied analytically and numerically the dynamics of a relativistically guided beam and its dependence on the q-parameter. Numerical simulation results are shown to trace the dependence of the focusing length on the q-Gaussian profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose
This study was designed to investigate methods to help patients suffering from unilateral tinnitus synthesizing an auditory replica of their tinnitus.

Materials and methods
Two semi-automatic methods (A and B) derived from the auditory threshold of the patient and a method (C) combining a pure tone and a narrow band-pass noise centred on an adjustable frequency were devised and rated on their likeness over two test sessions. A third test evaluated the stability over time of the synthesized tinnitus replica built with method C, and its proneness to merge with the patient's tinnitus. Patients were then asked to try and control the lateralisation of this single percept through the adjustment of the tinnitus replica level.

Results
The first two tests showed that seven out of ten patients chose the tinnitus replica built with method C as their preferred one. The third test, performed on twelve patients, revealed pitch tuning was rather stable over a week interval. It showed that eight patients were able to consistently match the central frequency of the synthesized tinnitus (presented to the contralateral ear) to their own tinnitus, which leaded to a unique tinnitus percept. The lateralisation displacement was consistent across patients and revealed an average range of 29dB to obtain a full lateral shift from the ipsilateral to the contralateral side.

Conclusions
Although spectrally simpler than the semi-automatic methods, method C could replicate patients' tinnitus, to some extent. When a unique percept between synthesized tinnitus and patients' tinnitus arose, lateralisation of this percept was achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design is described of a double layer frequency selective surface which can produce a differential phase shift of 180 ° as the wave propagates through it at normal incidence. The hand of an applied circularly polarized signal is reversed due to the 180° phase shift, and it is demonstrated that the exit circularly polarized output signal can be phase advanced or phase retarded by 180 ° upon rotation of the elements comprising the structure. This feature allows the surface to act as a spatial phase shifter. In this paper the beam steering capabilities of a 10 × 10 array of such elements are demonstrated. Here the individual elements comprising the array are rotated relative to each other in order to generate a progressive phase shift. At normal incidence the 3 dB Axial Ratio Bandwidth for LHCP to RHCP conversion is 5.3% and the insertion loss was found to be -2.3 dB, with minimum axial ratio of 0.05 dB. This array is shown to be able to steer a beam from -40 ° to +40 ° while holding axial ratio at the pointing angle to below 4 dB. The measured radiation patterns match the theoretical calculation and full-wave simulation results. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly selective positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGluR5) have emerged as a potential approach to treat positive symptoms associated with schizophrenia. mGluR5 plays an important role in both long-term potentiation (LTP) and long-term depression (LTD), suggesting that mGluR5 PAMs may also have utility in improving impaired cognitive function. However, if mGluR5 PAMs shift the balance of LTP and LTD or induce a state in which afferent activity induces lasting changes in synaptic function that are not appropriate for a given pattern of activity, this could disrupt rather than enhance cognitive function. We determined the effect of selective mGluR5 PAMs on the induction of LTP and LTD at the Schaffer collateral-CA1 synapse in the hippocampus. mGluR5-selective PAMs significantly enhanced threshold theta-burst stimulation (TBS)-induced LTP. In addition, mGluR5 PAMs enhanced both DHPG-induced LTD and LTD induced by the delivery of paired-pulse low-frequency stimulation. Selective potentiation of mGluR5 had no effect on LTP induced by suprathreshold TBS or saturated LTP. The finding that potentiation of mGluR5-mediated responses to stimulation of glutamatergic afferents enhances both LTP and LTD and supports the hypothesis that the activation of mGluR5 by endogenous glutamate contributes to both forms of plasticity. Furthermore, two systemically active mGluR5 PAMs enhanced performance in the Morris water maze, a measure of hippocampus-dependent spatial learning. Discovery of small molecules that enhance both LTP and LTD in an activity-appropriate manner shows a unique action on synaptic plasticity that may provide a novel approach for the treatment of impaired cognitive function. Neuropsychopharmacology (2009) 34, 2057-2071; doi:10.1038/npp.2009.30; published online 18 March 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical emission spectra from a low-pressure Ar plasma were studied with high spatial resolution. It has been shown that the intensity ratios of Ar lines excited through metastable levels to those excited directly from the ground state are sensitive to the shape of electron energy distribution function. From these measurements, important information on the spatial variation of plasma parameters can be obtained. (C) 1999 American Institute of Physics. [S0003-6951(99)01629-0].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A time-resolved Langmuir probe technique is used to measure the dependence of the electron density, electron temperature, plasma potential and electron energy distribution function (EEDF) on the phase of the driving voltage in a RF driven parallel plate discharge. The measurements were made in a low-frequency (100-500 kHz), symmetrically driven, radio frequency discharge operating in H-2, D-2 and Ar at gas pressures of a few hundred millitorr. The EEDFs could not be represented by a single Maxwellian distribution and resembled the time averaged EEDFs reported in 13.56 MHz discharges. The measured parameters showed structure in their spatial and temporal dependence, generally consistent with a simple oscillating sheath model. Electron temperatures of less than 0.1 eV were measured during the phase of the RF cycle when both electrodes are negative with respect to the plasma.