737 resultados para Sparse Incremental Em Algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new method to blindly unmix hyperspectral data, termed dependent component analysis (DECA). This method decomposes a hyperspectral images into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA assumes that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abudances are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master’s thesis addresses the maintenance of pre-computed structures, which store a frequent or expensive query, for the nested bag data type in the high level work-flow language Pig Latin. This thesis defines a model suitable to accommodate incremental expressions over nested bags on Pig Latin. Afterwards, the partitioned normal form for sets is extended with further restrictions, in order to accommodate the nested bag model, allow the Pig Latin nest and unnest operators revert each other, and create a suitable environment to the incremental computations. Subsequently, the extended operators – extended union and extended difference – are defined for the nested bag data model with the partitioned normal form for bags (PNF Bag) restriction, and semantics for the extended operators are given. Finally, incremental data propagation expressions are proposed for the nest and unnest operators on the data model proposed with the PNF Bag restriction, and the proof of correctness is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ao longo desta dissertação, é abordada a temática das obras de arte, focando-se um processo construtivo em particular, que é o Método de Lançamento Incremental. Começa-se por um enquadramento geral da temática das obras de arte, sendo feita a sua descrição, e faz-se uma síntese histórica dos materiais utilizados nas mesmas. De seguida, são apresentados os tipos de tabuleiros existentes e as tipologias estruturais das obras de arte. São mencionados ainda os processos e equipamentos construtivos que são utilizados na sua construção. É, de seguida, feita uma abordagem mais profunda ao processo construtivo alvo desta dissertação, nomeadamente questões de índole prática e de dimensionamento. É feita ainda uma aplicação prática, sendo feito um Estudo Prévio de uma solução para uma obra de arte executada com este processo construtivo. Termina-se indicando aspetos importantes na monitorização das obras de arte executadas pelo processo construtivo alvo desta dissertação, sendo ainda apresentadas as conclusões a que se chegou no final da mesma e possíveis desenvolvimentos futuros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of our study was to evaluate the accuracy of dynamic incremental bolus-enhanced conventional CT (DICT) with intravenous contrast administration, early phase, in the diagnosis of malignancy of focal liver lesions. A total of 122 lesions were selected in 74 patients considering the following criteria: lesion diameter 10 mm or more, number of lesions less than six per study, except in multiple angiomatosis and the existence of a valid criteria of definitive diagnosis. Lesions were categorized into seven levels of diagnostic confidence of malignancy compared with the definitive diagnosis for acquisition of a receiver-operator-characteristic (ROC) curve analysis and to determine the sensitivity and specificity of the technique. Forty-six and 70 lesions were correctly diagnosed as malignant and benign, respectively; there were 2 false-positive and 4 false-negative diagnoses of malignancy and the sensitivity and specificity obtained were 92 and 97%. The DICT early phase was confirmed as a highly accurate method in the characterization and diagnosis of malignancy of focal liver lesions, requiring an optimal technical performance and judicious analysis of existing semiological data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical serological screening assays for Chagas' disease are time consuming and subjective. The objective of the present work is to evaluate the enzyme immuno-assay (ELISA) methodology and to propose an algorithm for blood banks to be applied to Chagas' disease. Seven thousand, nine hundred and ninety nine blood donor samples were screened by both reverse passive hemagglutination (RPHA) and indirect immunofluorescence assay (IFA). Samples reactive on RPHA and/or IFA were submitted to supplementary RPHA, IFA and complement fixation (CFA) tests. This strategy allowed us to create a panel of 60 samples to evaluate the ELISA methodology from 3 different manufacturers. The sensitivity of the screening by IFA and the 3 different ELISA's was 100%. The specificity was better on ELISA methodology. For Chagas disease, ELISA seems to be the best test for blood donor screening, because it showed high sensitivity and specificity, it is not subjective and can be automated. Therefore, it was possible to propose an algorithm to screen samples and confirm donor results at the blood bank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion Kurtosis Imaging (DKI) is a fairly new magnetic resonance imag-ing (MRI) technique that tackles the non-gaussian motion of water in biological tissues by taking into account the restrictions imposed by tissue microstructure, which are not considered in Diffusion Tensor Imaging (DTI), where the water diffusion is considered purely gaussian. As a result DKI provides more accurate information on biological structures and is able to detect important abnormalities which are not visible in standard DTI analysis. This work regards the development of a tool for DKI computation to be implemented as an OsiriX plugin. Thus, as OsiriX runs under Mac OS X, the pro-gram is written in Objective-C and also makes use of Apple’s Cocoa framework. The whole program is developed in the Xcode integrated development environ-ment (IDE). The plugin implements a fast heuristic constrained linear least squares al-gorithm (CLLS-H) for estimating the diffusion and kurtosis tensors, and offers the user the possibility to choose which maps are to be generated for not only standard DTI quantities such as Mean Diffusion (MD), Radial Diffusion (RD), Axial Diffusion (AD) and Fractional Anisotropy (FA), but also DKI metrics, Mean Kurtosis (MK), Radial Kurtosis (RK) and Axial Kurtosis (AK).The plugin was subjected to both a qualitative and a semi-quantitative analysis which yielded convincing results. A more accurate validation pro-cess is still being developed, after which, and with some few minor adjust-ments the plugin shall become a valid option for DKI computation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rupture of aortic aneurysms (AA) is a major cause of death in the Western world. Currently, clinical decision upon surgical intervention is based on the diameter of the aneurysm. However, this method is not fully adequate. Noninvasive assessment of the elastic properties of the arterial wall can be a better predictor for AA growth and rupture risk. The purpose of this study is to estimate mechanical properties of the aortic wall using in vitro inflation testing and 2D ultrasound (US) elastography, and investigate the performance of the proposed methodology for physiological conditions. Two different inflation experiments were performed on twelve porcine aortas: 1) a static experiment for a large pressure range (0 – 140 mmHg); 2) a dynamic experiment closely mimicking the in vivo hemodynamics at physiological pressures (70 – 130 mmHg). 2D raw radiofrequency (RF) US datasets were acquired for one longitudinal and two cross-sectional imaging planes, for both experiments. The RF-data were manually segmented and a 2D vessel wall displacement tracking algorithm was applied to obtain the aortic diameter–time behavior. The shear modulus G was estimated assuming a Neo-Hookean material model. In addition, an incremental study based on the static data was performed to: 1) investigate the changes in G for increasing mean arterial pressure (MAP), for a certain pressure difference (30, 40, 50 and 60 mmHg); 2) compare the results with those from the dynamic experiment, for the same pressure range. The resulting shear modulus G was 94 ± 16 kPa for the static experiment, which is in agreement with literature. A linear dependency on MAP was found for G, yet the effect of the pressure difference was negligible. The dynamic data revealed a G of 250 ± 20 kPa. For the same pressure range, the incremental shear modulus (Ginc) was 240 ± 39 kPa, which is in agreement with the former. In general, for all experiments, no significant differences in the values of G were found between different image planes. This study shows that 2D US elastography of aortas during inflation testing is feasible under controlled and physiological circumstances. In future studies, the in vivo, dynamic experiment should be repeated for a range of MAPs and pathological vessels should be examined. Furthermore, the use of more complex material models needs to be considered to describe the non-linear behavior of the vascular tissue.