981 resultados para Soybean hulls


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to identify by biometric analyses the most stable soybean parents, with higher oil or protein contents, cultivated at different seasons and locations of the state of Minas Gerais, Brazil. Forty-nine genotypes were evaluated in the municipalities of Viçosa, Visconde do Rio Branco, and São Gotardo, in the state of Minas Gerais, from 2009 to 2011. Protein and oil contents were analyzed by infrared spectrometry using a FT-NIR analyzer. The effects of genotype, environment, and genotype x environment interaction were significant. The BARC-8 soybean genotype is the best parent to increase protein contents in the progenies, followed by BR 8014887 and CS 3032PTA276-3-4. Selection for high oil content is more efficient when the crossings involve the Suprema, CD 01RR8384, and A7002 genotypes, which show high mean phenotypic values, wide adaptability, and greater stability to environmental variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to determine the inheritance of the long juvenile period trait in natural variants of the Doko, BR 9 (Savana), Davis, Embrapa 1 (IAS 5RC), and BR 16 soybean cultivars. Complete diallel crosses were made between the Doko and BR 16 cultivars and their variants. A 3:1 segregation ratio was observed in the F2 populations of the 'Doko' x Doko-18T, 'Doko' x Doko-Milionária, 'Davis' x São Carlos, and 'BR 9 (Savana)' x MABR92-836 (Savanão) crosses, indicating that the long juvenile period trait is controlled by a pair of recessive genes. The difference in late flowering between the Doko cultivar and both of its variants was caused by a recessive spontaneous mutation at the same genetic locus. However, the variants Doko-18T and Doko-Milionária are identical mutants that share a pair of genes that control the long juvenile period under short-day conditions. These mutants can be used in breeding programs to develop cultivars adapted to low-latitude tropical regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate fish oil replacement by soybean oil in diets, as for the effects on the performance and body composition of juveniles of fat snook (Centropomus parallelus). The experiment was carried out in a randomized block design, with three treatments (lipid sources) and six replicates, in a 60-day period. Fat snook juveniles (24.17±0.28g) were distributed in 18 experimental tanks of 200 L each, equipped with aeration and heating systems, under continuous water renovation (800% per day). Three isoproteic (44% CP) and isoenergetic (4,635 kcal CE kg-1) diets were formulated to comprise three replacement rates (0, 50, and 100%) of fish oil by soybean oil. Biometric analyses were done to evaluate fish performance, and two entire specimens from each replicate were used for body composition analyses. The zootechnical indices of weight gain (38.68±5.41 g), feed conversion (1.38±0.10), and specific growth at 1.70±0.18% weight gain per day were considered satisfactory. Lipid source substitution does not affect the performance and body composition of fat snook juveniles, which suggests that soybean oil can replace fish oil in diet formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract:The objective of this work was to evaluate the effect of grazing intensity on the decomposition of cover crop pasture, dung, and soybean residues, as well as the C and N release rates from these residues in a long-term integrated soybean-beef cattle system under no-tillage. The experiment was initiated in 2001, with soybean cultivated in summer and black oat + Italian ryegrass in winter. The treatments consisted of four sward heights (10, 20, 30, and 40 cm), plus an ungrazed area, as the control. In 2009-2011, residues from pasture, dung, and soybean stems and leaves were placed in nylon-mesh litter bags and allowed to decompose for up to 258 days. With increasing grazing intensity, residual dry matter of the pasture decreased and that of dung increased. Pasture and dung lignin concentrations and C release rates were lower with moderate grazing intensity. C and N release rates from soybean residues are not affected by grazing intensity. The moderate grazing intensity produces higher quality residues, both for pasture and dung. Total C and N release is influenced by the greater residual dry matter produced when pastures were either lightly grazed or ungrazed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean (Glycine max. L.) nodular senescence results in the dismantling of the peribacteroid membrane (PBM) and in an increase of soybean isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2) mRNA and protein levels. This suggests that in senescing soybean nodular cells, the specific glyoxylate cycle enzyme activities might be induced to reallocate carbon obtained from the PBM degradation. In order to evaluate as well the carbon metabolism of the nitrogen-fixing Bradyrhizobium japonicum endosymbiotic bacteroids during nodular senescence, their glyoxylate cycle activities were also investigated. To this end, partial DNA sequences were isolated from their icl and ms genes, but the corresponding mRNAs were not detected in the microorganisms. It was also observed that the bacteroid ICL and MS activities were negligible during nodular senescence. This suggests that glyoxylate cycle activities are not reinitiated in the bacteroids under these physiological conditions. In case the microorganisms nevertheless feed on the PBM degradation products, this might occur via the citric acid cycle exclusively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13C- and 31P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B.japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean (Glycine max. L.) nodular senescence results in the dismantling of the peribacteroid membrane (PBM) and in an increase of soybean isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2) mRNA and protein levels. This suggests that in senescing soybean nodular cells, the specific glyoxylate cycle enzyme activities might be induced to reallocate carbon obtained from the PBM degradation. In order to evaluate as well the carbon metabolism of the nitrogen-fixing Bradyrhizobium japonicum endosymbiotic bacteroids during nodular senescence, their glyoxylate cycle activities were also investigated. To this end, partial DNA sequences were isolated from their icl and ms genes, but the corresponding mRNAs were not detected in the microorganisms. It was also observed that the bacteroid ICL and MS activities were negligible during nodular senescence. This suggests that glyoxylate cycle activities are not reinitiated in the bacteroids under these physiological conditions. In case the microorganisms nevertheless feed on the PBM degradation products, this might occur via the citric acid cycle exclusively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using C-13- and P-31-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N-2 fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malate synthase (MS; EC 4.1.3.2), an enzyme specific to the glyoxylate cycle, was studied in cotyledons of dark-grown soybean (Glycine max L) seedlings with light and electron microscopy techniques. Immunogold localization confirmed biochemical evidence that MS from soybean is a glyoxysomal matrix enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate a possible association between soybean malate synthase (MS; L-malate glyoxylate-lyase, CoA-acetylating, EC 4.1.3.2) and glyoxysomal malate dehydrogenase (gMDH; (S)-malate: NAD(+) oxidoreductase, EC 1.1.1.37), two consecutive enzymes in the glyoxylate cycle, their elution profiles were analyzed on Superdex 200 HR fast protein liquid chromatography columns equilibrated in low- and high-ionic-strength buffers. Starting with soluble proteins extracted from the cotyledons of 5-d-old soybean seedlings and a 45% ammonium sulfate precipitation, MS and gMDH coeluted on Superdex 200 HR (low-ionic-strength buffer) as a complex with an approximate relative molecular mass (M(r)) of 670000. Dissociation was achieved in the presence of 50 mM KCl and 5 mM MgCl2, with the elution of MS as an octamer of M, 510 000 and of gMDH as a dimer of M, 73 000. Polyclonal antibodies raised to the native copurified enzymes recognized both denatured MS and gMDH on immunoblots, and their native forms after gel filtration. When these antibodies were used to screen a lambda ZAP II expression library containing cDNA from 3-d-old soybean cotyledons, they identified seven clones encoding gMDH, whereas ten clones encoding MS were identified using an antibody to SDS-PAGE-purified MS. Of these cDNA clones a 1.8 kb clone for MS and a 1.3-kb clone for gMDH were fully sequenced. While 88% identity was found between mature soybean gMDH and watermelon gMDH, the N-terminal transit peptides showed only 37% identity. Despite this low identity, the soybean gMDH transit peptide conserves the consensus R(X(6))HL motif also found in plant and mammalian thiolases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During our study of the glyoxylate cycle in soybean (Glycine max. L. var. Maple arrow), two mitochondrial and three cytosolic aconitase molecular species (EC 4.2.1.3) were detected, designated as M1, M2, C1, C2 and C3 isoforms, respectively, according to their intracellular locations and electrophoretic mobilities. Using the glyoxylate cycle marker enzymes isocitrate lyase (ICL, EC 4.1.3.1) and malate synthase (MS, EC 4.1.3.2), the activity of this pathway providing the essential link between P-oxidation and gluconeogenesis was confirmed during germination (cotyledons) and senescence (leaves). It was then established that, in both cases, the activity of the CI aconitase isoform developed concomitantly with the transcription and translation levels of the icl and ms genes. This strongly suggests that C1 aconitase is constitutive of the glyoxylate cycle. In addition, the same isoform was found to be active during pathogenic attack as well (hypocotyls). It might be assumed that in such a case the glyoxylate cycle is reinitiated as a part of a carbon reallocation system feeding on the diseased tissue cellular components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic attack by the fungus Botrytis cinerea (primary pathogen) on soybean leaves (Glycine max. L.; cv. Maple arrow) results in a hypersensitive response (necrotising infected leaves), in the establishment of local acquired resistance, as well as in the systemic induction of genes coding for pathogenesis-related proteins. It now appears that, concomitantly with these already well documented defence reactions, the pathogenic attack also induces the carbon reallocation mechanism based on the reinitiation of the glyoxylate cycle (pseudo-senescence of the infected leaves).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability of vegetable oils is an important factor that affects their quality. In this study, we investigated the thermal stability of oil and lecithin extracted from soybeans by two distinct processes: mechanical extraction (pressing) and physical extraction (solvent). Thermal analysis was used to obtain information about different methodologies of extraction. The physically extracted products proved more stable than those extracted mechanically. Raman and UV-Vis techniques were applied to underpin the discussion of process differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR), powder x-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM), particle size analysis by laser diffraction (LPSA) and thermal analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic antioxidants are an alternative to prevent or retard the degradation of biofuels made from vegetable oils. In this study, it was evaluated the oxidative stability of B100 soybean oil biodiesel, in the presence of tercbutylhydroquinone (TBHQ). The results showed that the induction period, that precedes the seeding process, was delayed in the presence of the antioxidant. Moreover, the obtained results suggest that the B100 biodiesel containing TBHQ can present a storage time at 25 ºC, three times longer than the estimated time for the pure B100.