937 resultados para Sorghum -- Diseases and pests
Resumo:
Graminicolous Downy Mildew (GDM) diseases caused by the genera Peronosclerospora (13 spp.) and Sclerophthora (6 spp. and 1 variety) are poorly studied but destructive diseases of major crops such as corn, sorghum, sugarcane and other graminoids. Eight of the 13 described Peronosclerospora spp. are able to infect corn. In particular, P. philippinensis (= P. sacchari), P. maydis, P. heteropogonis, and S. rayssiae var. zeae cause major losses in corn yields in tropical Asia. In 2012 a new species, P. australiensis, was described based on isolates previously identified as P. maydis in Australia; this species is now a pathogen of major concern. Despite the strong impact of GDM diseases, there are presently no reliable molecular methods available for their detection. GDM pathogens are among the most difficult Oomycetes to identify using molecular tools, as their taxonomy is very challenging, and little genetic sequence data are available for development of molecular tools to detect GDM pathogens to species level. For example, from over 15 genes used in identification, diagnostics or phylogeny of Phytophthora, only ITS1 and cox2 show promise for use with GDM pathogens. Multiplex/multigene conventional and qPCR assays are currently under evaluation for the detection of economically important GDM spp. Scientists from the USA, Germany, Canada, Australia, and the Philippines are collaborating on the development and testing of diagnostic tools for these pathogens of concern.
Resumo:
As we initiate entomological research on potato (Solanum tuberosum L.) in Uganda, there is need to understand farmers’ knowledge of existing insect pest problems and their management practices. Such information is important for designing a suitable intervention and successful integrated pest management (IPM) strategy. A farm household survey using a structured questionnaire was conducted among 204 potato farmers in six districts of Uganda (i.e., Kabale, Kisoro, Mbale, Kapchorwa, Mubende, and Kyegegwa) during August and September 2013. Diseases, insect pests, price fluctuations, and low market prices were the four highest ranked constraints in potato production, in order of decreasing importance. Cutworms (Agrotis spp.), aphids (Myzus persicae (Sulzer)), and potato tuber moth (Phthorimaea operculella (Zeller)) were the three most severe insect pests. Ants (Dorylis orantalis Westwood), whiteflies (Bemisia tabaci (Gennadius)), and leafminer flies (Liriomyza huidobrensis (Blanchard)) were pests of moderate importance. Major yield losses are predominantly due to late blight (Phytophthora infestans (Mont.) de Bary) and reached 100% without chemical control in the districts of Kabale, Kisoro, Mbale, and Kapchorwa. On average, farmers had little to moderate knowledge about pest characteristics. The predominant control methods were use of fungicides (72% of respondents) and insecticides (62% of respondents). On average, only 5% of the 204 farmers knew about insect pests and their natural enemies. This lack of knowledge calls for training of both farmers and extension workers in insect pest identification, their biology, and control. Empowering farmers with knowledge about insect pests is essential for the reduction of pesticide misuse and uptake of more environmentally friendly approaches like IPM. Field surveys would need follow-up in order to assess the actual field infestation rates and intensities of each insect pest and compare the results with the responses received from farmers.
Resumo:
"New series" vol. II, no. 1.
Resumo:
Lucerne (Medicago sativa) has been suggested as an ideal refuge habitat as part of an integrated pest management (IPM) program because it harbours high numbers of beneficial arthropods. Whether or not cutting of lucerne encourages the movement of these beneficials into adjacent target crops is unknown. Vacuum samples were used to determine the effects of cutting lucerne on arthropod abundance (pests and predators) within lucerne and adjacent soybean (Glycine max) crops. Vacuum-sample collections of arthropods were conducted before and after lucerne cutting on seven occasions in four fields over two seasons. In the lucerne, 10 m by 1 m strips parallel to the crop interface were sampled at 5, 10, 15, 20 and 30 m from the interface. In the soybean, 10 m of row were sampled at the same distances from the crop interface. The abundance of predators in lucerne was reduced immediately after cutting at all distances from the interface. Predator abundance in soybean did not show any change. The cutting of lucerne significantly reduced pest numbers within the lucerne but had little effect on pest abundance in the adjacent soybean. The temporal pattern in pest and predator abundance was very different for each field sampled. Generally, arthropods decreased in abundance after cutting and gradually increased as the lucerne grew back. In soybeans, arthropod numbers fluctuated regardless of the cutting of the lucerne. Cutting of lucerne alone does not guarantee movement of predators into the adjacent target crop. The presence of lucerne fields within a cropping area may have some impact on regional predator populations, and so still be useful for IPM programs, but this has yet to be tested critically.
Resumo:
The root knot nematode (RKN), Meloidogyne incognita, is widespread worldwide and a major pathogen of several cultivated crops. The use of resistant genotypes is the most effective and environmentally sound way to manage RKN. In this study, we screened 16 selected sweet potato cultivars including Amanda, Bárbara, Beatriz, Beauregard, Brazlândia Branca, Brazlândia Rosada, Brazlândia Roxa, BRS Amélia, BRS Cuia, BRS Rubissol, Carolina Vitória, Duda, Júlia, Marcela, PA-26/2009, and Princesa obtained from Embrapa and Universidade Federal do Tocantins? germplasm bank. Studies were conducted under greenhouse and field conditions and the agronomic performance of the cultivars was evaluated in a nematode and soilborne insect-infested field. All 16 sweet potato cultivars tested were rated as resistant to this nematode both under greenhouse and field conditions with reproduction factors < 1. In the field infested with M. incognita, sweet potato cultivars Duda, BRS Amélia, Beauregard, Brazlândia Rosada, and Brazlândia Roxa stood out as superior cultivars, with average yield ranging from 26 to 47 tons per ha. Overall, most cultivars exhibited a fusiform to near fusiform root shape, a good characteristic for the market, and were moderately affected by insects (attack incidence 1 to 30%). As global demand for energy continues to rise, selecting new cultivars of sweet potatoes with increased resistance to nematode diseases and with high yield will be important for food security and biofuel production.
Resumo:
Citrus canker is a disease of citrus and closely related species, caused by the bacterium Xanthomonas citri subsp. citri. This disease, previously exotic to Australia, was detected on a single farm [infested premise-1, (IP1). IP is the terminology used in official biosecurity protocols to describe a locality at which an exotic plant pest has been confirmed or is presumed to exist. IP are numbered sequentially as they are detected] in Emerald, Queensland in July 2004. During the following 10 months the disease was subsequently detected on two other farms (IP2 and IP3) within the same area and studies indicated the disease first occurred on IP1 and spread to IP2 and IP3. The oldest, naturally infected plant tissue observed on any of these farms indicated the disease was present on IP1 for several months before detection and established on IP2 and IP3 during the second quarter (i.e. autumn) 2004. Transect studies on some IP1 blocks showed disease incidences ranged between 52 and 100% (trees infected). This contrasted to very low disease incidence, less than 4% of trees within a block, on IP2 and IP3. The mechanisms proposed for disease spread within blocks include weather-assisted dispersal of the bacterium (e.g. wind-driven rain) and movement of contaminated farm equipment, in particular by pivot irrigator towers via mechanical damage in combination with abundant water. Spread between blocks on IP2 was attributed to movement of contaminated farm equipment and/or people. Epidemiology results suggest: (i) successive surveillance rounds increase the likelihood of disease detection; (ii) surveillance sensitivity is affected by tree size; and (iii) individual destruction zones (for the purpose of eradication) could be determined using disease incidence and severity data rather than a predefined set area.
Resumo:
Most tropical fruit flies only lay into mature fruit, but a small number can also oviposit into unripe fruit. Little is known about the link between adult oviposition preference and offspring performance in such situations. In this study we examine the influence of different ripening stages of two mango Mangifera indica L. (Anacardiaceae) varieties on the preference and performance of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), a fly known to be able to develop in unripe fruit. Work was carried out as a series of laboratory-based choice and no-choice oviposition experiments and larval growth trials. In oviposition choice trials, female B. dorsalis demonstrated a preference for ripe fruit of mango variety Namdorkmai over variety Oakrong, but generally the dependent variable most influencing oviposition results was fruit ripening stage. Ripe and fully-ripe mangoes were most preferred for oviposition by B. dorsalis. In contrast, unripe mango was infrequently used by ovipositing females, particularly in choice trials. Consistent with the results of oviposition preference, ripe and fully-ripe mangoes were also best for offspring survival, with a higher percentage of larval survival to pupation and shorter development times in comparison to unripe mango. Changes in Total Soluble Solids, TSS, and skin toughness correlate with changing host use across the ripening stages. Regardless of the mango variety or ripeness stage, B. dorsalis had difficulty penetrating the pericarp of our experimental fruit. Larval survival was also often poor. We discuss the possibility that there may be differences in the ability of laboratory and wild flies to penetrate fruit for oviposition, or that in the field flies more regularly utilize natural fruit wounds as oviposition sites.
Resumo:
Nontuberculous mycobacteria are ubiquitous environmental organisms that have been recognised as a cause of pulmonary infection for over 50 years. Traditionally patients have had underlying risk factors for development of disease; however the proportion of apparently immunocompetent patients involved appears to be rising. Not all patients culture-positive for mycobacteria will have progressive disease, making the diagnosis difficult, though criteria to aid in this process are available. The two main forms of disease are cavitary disease (usually involving the upper lobes) and fibronodular bronchiectasis (predominantly middle and lingular lobes). For patients with disease, combination antibiotic therapy for 12-24 months is generally required for successful treatment, and this may be accompanied by drug intolerances and side effects. Published success rates range from 30-82%. As the progression of disease is variable, for some patients, attention to pulmonary hygiene and underlying diseases without immediate antimycobacterial therapy may be more appropriate. Surgery can be a useful adjunct, though is associated with risks. Randomised controlled trials in well described patients would provide stronger evidence-based data to guide therapy of NTM lung diseases, and thus are much needed.
Resumo:
Abstract Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5–6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.
Resumo:
Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.