915 resultados para Solar Radiation
Resumo:
The current study reports on the synthesis and characterization of a new inorganic nano-pigment with an intense blue color and high solar radiation reflective properties (70%). The nano-pigment YIn0.9Mn0.1O3-ZnO was synthesized by a sol-gel combustion method and characterized with the aid of X-Ray diffraction, Raman spectroscopy, Magnetic susceptibility, Transmission electron microscopy, UV ndash;vis-NIR diffuse reflectance spectroscopy and CIE-1976 L*a*b* color measurements. The Rietveld refinement of the XRD patterns of the developed nano-pigment disclosed the existence of YIn0.9Mn0.1O3 and ZnO in a 1:1 ratio with hexagonal crystal structures. For comparison, YIn0.9Mn0.1O3 was also synthesized by the sol gel combustion route and its optical properties compared with that of YIn0.9Mn0.1O3-ZnO. It is interesting to note that the developed YIn0.9Mn0.1O3-ZnO nano-pigmeht exhibits superior blue hue (b* = -40.55) and solar reflectance (R* = 70%) values as compared to the YIn0.9Mn0.1O3 nano-pigment (b* = -22.28, R* = 50%). Most importantly, the potential utility of the nano-pigment as a ``Cool Pigment'' was demonstrated by coating onto roofing materials like aluminum roofing sheets. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Mathematical formulas for estimating the hourly and daily radiation incident on planes of azimuth three step tracking and hour angle three step tracking have been derived in this paper. Based on the hourly solar radiation data of an average day in each month at Er-Lian-Hao-Te city, the hourly and monthly radiation received by planes of these two kinds of tracking have been calculated. The results show that in this district, one axis azimuth three step tracking and hour angle three step tracking could, respectively, obtain 66.5% and 63.3% higher radiation than that on the horizontal surface all year. Moreover, a two axis azimuth three step tracking plane could receive 72% more radiation than the horizontal surface. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Radiation-use efficiency (RUE, g/MJ) and the harvest index (HI, unitless) are two helpful characteristics in interpreting crop response to environmental and climatic changes. They are also increasingly important for accurate crop yield simulation, but they are affected by various environmental factors. In this study, the RUE and HI of winter wheat and their relationships to canopy spectral reflectance were investigated based on the massive field measurements of five nitrogen (N) treatments. Crop production can be separated into light interception and RUE. The results indicated that during a long period of slow growth from emergence to regreening, the effect of N on crop production mainly showed up in an increased light interception by the canopy. During the period of rapid growth from regreening to maturity, it was present in both light interception and RUE. The temporal variations of RUEAPAR (aboveground biomass produced per unit of photosynthetically active radiation absorbed by the canopy) during the period from regreening to maturity had different patterns corresponding to the N deficiency, N adequacy and N-excess conditions. Moreover, significant relationships were found between the RUEAPAR and the accumulative normalised difference vegetation index (NDVI) in the integrated season (R-2 = 0.68), between the HI and the accumulative NDVI after anthesis (R-2 = 0.89), and between the RUEgrain (ratio of grain yield to the total amount of photosynthetically active radiation absorbed by the canopy) and the accumulative NDVI of the whole season (R-2 = 0.89) and that after anthesis (R-2 = 0.94). It suggested that canopy spectral reflectance has the potential to reveal the spatial information of the RUEAPAR, HI and RUEgrain. It is hoped that this information will be useful in improving the accuracy of crop yield simulation in large areas.
Resumo:
We monitored UVA, UVB, and solar radiation from August 2001 to 2003 on the northern Qinghai-Tibetan Plateau to characterize the diurnal and seasonal variations of UV radiation on the world's highest plateau. Daily UVB radiation and the ratio of UVB to total solar radiation increased significantly when the atmospheric ozone concentration decreased as estimated by the total ozone mapping spectrometer (TOMS), as well as when cloud coverage decreased. The UVB/UVA ratio also showed a significant increase when the TOMS ozone concentration decreased in the morning. The seasonal variation pattern of UVB, however, was closely correlated with solar elevation but was little affected by the seasonal pattern of the atmospheric ozone amount. Compared to observations from the central plateau, the magnitude of the UVB increase attributed to ozone depletion was smaller at the northern edge. The study suggests that the temporal variation of ground UV radiation is determined by both solar elevation and the ozone amount, but the spatial difference on the plateau is likely to be ascribed mainly to the spatial variation of the ozone amount. (c) 2007 Published by Elsevier B.V.
Resumo:
Solar heating systems have the potential to be an efficient renewable energy technology, provided they are sized correctly. Sizing a solar thermal system for domestic applications does not warrant the cost of a simulation. As a result simplified sizing procedures are required. The size of a system depends on a number of variables including the efficiency of the collector itself, the hot water demand and the solar radiation at a given location. Domestic Hot Water (DHW) demand varies with time and is assessed using a multi-parameter detailed model. Secondly, the national energy evaluation methodologies are evaluated from the perspective of solar thermal system sizing. Based on the assessment of the standards, limitations in the evaluation method for solar thermal systems are outlined and an adapted method, specific to the sizing of solar thermal systems, is proposed. The methodology is presented for two common dwelling scenarios. Results from this showed that it is difficult to achieve a high solar fraction given practical sizes of system infrastructure (storage tanks) for standard domestic properties. However, solar thermal systems can significantly offset energy loads due associated DHW consumption, particularly when sized appropriately. The presented methodology is valuable for simple solar system design and also for the quick comparison of salient criteria.
Resumo:
We have implemented the WRF-Chem model version 3.5 over Poland to quantify the direct and indirect feedback effects of aerosols on simulated meteorology and aerosol concentrations. Observations were compared with results from three simulations at high spatial resolutions of 5 × 5 km: (1) BASE—without any aerosol feedback effects; (2) DIR—with direct aerosol-radiative effects (3) INDIR—with direct and indirect aerosol-radiative effects. We study the overall effect during January 2011 as well as selected episodes of the highest differences in PM10 concentrations between the three simulations. For the DIR simulation, the decrease in monthly mean incoming solar radiation (SWDOWN) appears for the entire study area. It changes geographically, from about −8.0 to −2.0 W m−2, respectively for the southern and northern parts of the country. The highest changes do not correspond to the highest PM10 concentration. Due to the solar radiation changes, the surface mean monthly temperature (T2) decreases for 96 % of the area of Poland, but not more than 1.0 °C. Monthly mean PBLH changes by more than ±5 m for 53 % of the domain. Locally the differences in PBLH between the DIR and BASE are higher than ± 20 m. Due to the direct effect, for 84 % of the domain, the mean monthly PM10 concentrations increase by up to 1.9 µg m−3. For the INDIR simulation the spatial distribution of changes in incoming solar radiation as well as air temperature is similar to the DIR simulation. The decrease of SWDOWN is noticed for the entire domain and for 23 % of the domain is higher than −5.0 W m−2. The absolute differences of PBLH are slightly higher for INDIR than DIR but similarly distributed spatially. For daily episodes, the differences between the simulations are higher, both for meteorology and PM10 concentrations, and the pattern of changes is usually more complex. The results indicate the potential importance of the aerosol feedback effects on modelled meteorology and PM10 concentrations.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica
Resumo:
The heterogeneous photocatalytic degradation of methylorange over TiO2 is studied and is found to be cost effective. Effect of Zirconium metal incorporation over titania system is investigated. Photocatalytic degradation of methylorange using solar radiation is found to be highly economical when compared with the processes using artificial UV radiation, which require substantial electrical power input. The characterization of titania as well as modified zirconium metal doped titania systems are done using XRD, FTIR and EDAX measurements. The catalytic activities of different systems are also compared and is tried to correlate with the crystallite size and presence of dopant metal.
Resumo:
This thesis is devoted to the development of a relatively new, rapidly developing quaternary semiconducting material (viz., Cu2ZnSnS4) used for photovoltaic applications. This semiconductor, commonly known as CZTS, is closely related to a family of materials that have been used for solar cell applications. It is a compound semiconductor made of copper, zinc, tin and sulfur, which are sufficiently abundant elements; none of them is harmful to the environment even at large scale usage. Aim of this study is to fabricate CZTS solar cells through chemical spray pyrolysis (CSP) technique. At first the influence of various spray parameters like substrate temperature, spray rate, precursor ratio etc. on the opto-electronic properties of CZTS films will be studied in detail. Then the fabrication of CZTS/In2S3 hetero junctions and various ways to improve the performance parameters will be tried
Resumo:
The radiation budget simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) is evaluated for the period 1979–2001 using independent satellite data and additional model data. This provides information on the quality of the radiation products and indirect evaluation of other aspects of the climate produced by ERA40. The climatology of clear-sky outgoing longwave radiation (OLR) is well captured by ERA40. Underestimations of about 10 W m−2 in clear-sky OLR over tropical convective regions by ERA40 compared to satellite data are substantially reduced when the satellite sampling is taken into account. The climatology of column-integrated water vapor is well simulated by ERA40 compared to satellite data over the ocean, indicating that the simulation of downward clear-sky longwave fluxes at the surface is likely to be good. Clear-sky absorbed solar radiation (ASR) and clear-sky OLR are overestimated by ERA40 over north Africa and high-latitude land regions. The observed interannual changes in low-latitude means are not well reproduced. Using ERA40 to analyze trends and climate feedbacks globally is therefore not recommended. The all-sky radiation budget is poorly simulated by ERA40. OLR is overestimated by around 10 W m−2 over much of the globe. ASR is underestimated by around 30 W m−2 over tropical ocean regions. Away from marine stratocumulus regions, where cloud fraction is underestimated by ERA40, the poor radiation simulation by ERA40 appears to be related to inaccurate radiative properties of cloud rather than inaccurate cloud distributions.
Resumo:
A highly stable microvolt amplifier for use with atmospheric broadband thermopile radiometers is described. The amplifier has a nominal gain of 500, for bipolar input signals in the range +/- 10 mV from a floating source. The noise level at the input is less than 5 mu V (at 100 k Omega input impedance), permitting instantaneous diffuse solar radiation measurements to 0.5 W m(-2) resolution with 12 bit analog to digital conversion. The temperature stability of gain is better than 5 ppm/degrees C (-4 to 20 degrees C). Averaged over a decade of use, the long term drift of the amplifier gain is less than similar to 0.02%/yr. As well as radiometers measuring solar and terrestrial radiations, the amplifier has also been successfully used with low level signals from thermocouples and ground heat flux plates.
Resumo:
Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.
Resumo:
Comparing changes in temperature and solar radiation on centennial timescales can help to constrain the Sun’s impact on climate. New findings regarding the minimum activity level of the Sun reveal that comparisons made so far may have been too simplistic.
Resumo:
A detailed analysis is presented of solar UV spectral irradiance for the period between May 2003 and August 2005, when data are available from both the Solar Ultraviolet pectral Irradiance Monitor (SUSIM) instrument (on board the pper Atmosphere Research Satellite (UARS) spacecraft) and the Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instrument (on board the Solar Radiation and Climate Experiment (SORCE) satellite). The ultimate aim is to develop a data composite that can be used to accurately determine any differences between the “exceptional” solar minimum at the end of solar cycle 23 and the previous minimum at the end of solar cycle 22 without having to rely on proxy data to set the long‐term change. SUSIM data are studied because they are the only data available in the “SOLSTICE gap” between the end of available UARS SOLSTICE data and the start of the SORCE data. At any one wavelength the two data sets are considered too dissimilar to be combined into a meaningful composite if any one of three correlations does not exceed a threshold of 0.8. This criterion removes all wavelengths except those in a small range between 156 nm and 208 nm, the longer wavelengths of which influence ozone production and heating in the lower stratosphere. Eight different methods are employed to intercalibrate the two data sequences. All methods give smaller changes between the minima than are seen when the data are not adjusted; however, correcting the SUSIM data to allow for an exponentially decaying offset drift gives a composite that is largely consistent with the unadjusted data from the SOLSTICE instruments on both UARS and SORCE and in which the recent minimum is consistently lower in the wave band studied.