955 resultados para Software CAD 3D para vestuário
Resumo:
This paper presents the development of a Web application called CityFreedom based on 3D modeling. The developed system demonstrates the use of most revolutionary and innovative techniques to create Web portals with the integrated 3D navigation scenarios to their own pages, without requiring any kind of plug-ins or external software. Everything works on the basis of compatible browsers. The CtyFreedom aims to give the user the feeling of immersion in virtual reality so get to interact with a three-dimensional city in order to see new places, traveling in an area of town that has always thought of knowing or even analyze establishments long before attend-them. It's the freedom to know and traveling around the city in a simple and trivial way. It is a new trend, the future of Web systems development
Resumo:
This project brings the development of an Android application which will allow users to access 3D models on web. The application developed allows Android devices to access web pages which have code that should use OPENGL to renderize. To demonstrate this functionality, an example web application was build, using technologies such as X3DOM and HTML5, which uses WebGL to get renderized. This web application gives to the user an environment of a virtual city, where he could surf by and interact with the objects. The Android application brings this immersion to the mobile world, also. The access and storage of data was developed a Webserver, which bring to the web application a simple API to give access to the database
Resumo:
This work is initially based in give a solution to a problem consisting of lifting a load in a warehouse focusing specifically on the solution´s project and comparison of the results obtained following the sequence of the book and comparing these results with the finite elements simulation based on the 3D components modeling. Starting from that was realized the project of the worm gear reducer to solve the problem and makes the work easier. The project consisted basically of the study, project itself and simulation by software of a worm gear reducer and projects steps, starting with the initial problem conditions (to lifting a load up to an specific height at a given time) following all the reducer project sequence, starting by the preliminary draft and electric motor selection using iterative process, material selection, worm gear dimensioning, axles, keyways, bearings and coupling. After that was performed the three dimensional modeling of the components using SolidWorks software and simulating these components using Ansys software. The results show the importance of the CAD in terms of improving project development speed and reducing costs with prototypes
Resumo:
The representation of real objects in virtual environments has applications in many areas, such as cartography, mixed reality and reverse engineering. The generation of these objects can be performed in two ways: manually, with CAD (Computer Aided Design) tools, or automatically, by means of surface reconstruction techniques. The simpler the 3D model, the easier it is to process and store it. Multiresolution reconstruction methods can generate polygonal meshes in different levels of detail and, to improve the response time of a computer program, distant objects can be represented with few details, while more detailed models are used in closer objects. This work presents a new approach to multiresolution surface reconstruction, particularly interesting to noisy and low definition data, for example, point clouds captured with Kinect sensor
Resumo:
The objective of this study was to develop a model that allows testing in the wind tunnel at high angles of attack and validates its most critical components by analyzing the results of simulations in finite element software. During the project this structure suffered major loads identified during the flight conditions and, from these, we calculated the stresses in critical regions defined as the parts of the model that have higher failure probabilities. All aspects associated with Load methods, mesh refining and stress analysis were taken into account in this approach. The selection of the analysis software was based on project needs, seeking greater ease of modeling and simulation. We opted for the software ANSYS® since the entire project is being developed in CAD platforms enabling a friendly integration between software's modeling and analysis
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The aim of this study was to evaluate the biomechanical behavior of different implant connection types, by means of three-dimensional finite element analysis. 3 Three-dimensional models were created with a graphic modeling software: SolidWorks 2006 and Rhinoceros 4.0, and InVesalius (CTI, São Paulo, Brasil), the bone was obtained by computerized tomography of a sagittal section of the molar region. The model was composed by bone block with an implant (4 x 10 mm) (Conexão Sistemas de Prótese, São Paulo), with different implant connections: external hex, internal hex and Morse-taper with the corresponding prosthetic component Ucla or Morse-taper abutment. The Three-dimensional models were transferred to finite element software Femap 10.0 (Siemens PLM Software Inc., CA, USA), to generate a mesh, boundary conditions and loading. An axial (200N) and oblique load (100N) was applied on the occlusal surface of the crowns. Analyses were performed using the finite element software NEiNastran 9.0 (Noran Engineering, Inc., USA) and transferred to the Femap 10.0 to obtain the results; after the results were visualized using von Mises stress maps and Maximum stress principal. The results showed the stress distribution was similar between models, with a little superiority of Morse-taper connection. It was concluded that: the three connection types were biomechanical viable; The Morse-taper connection presented the better internal stress distribution; there was not significant biomechanical differences on the bone.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The high competitiveness and the search for newtechnologies that differentiate the product from the project,require the use of new digital tools. The computer aideddesign - Computed Aided Design (CAD), with electronicmodeling, simulation, structural analysis and production,performed in a virtual environment through the applicationof specific software, are available but their use is stilllimited. There are various software available in languagesand extensions to industrial production which, from 3Dmodeling, they can manage through Computer NumericalControl - Computed Numerical Control (CNC) machiningcenters, laminating, stamping, mold making and otherprocesses productive. This project aims to encouragecreativity and entrepreneurship in the community throughthe provision of technology computer aided design - CAD,with a view to implementation of machining technology.
Resumo:
The use of computer-assisted technologies such as CAD - Computed Aided Design, CAM - Computed Aided Manufacturing, CAE - Computed Aided Engineering and CNC - Computed Numerical Control, are priorities in engineering and product designers. However, the dimensional measurement between the virtual and the real product design requires research, and dissemination procedures among its users. This work aims to use these technologies, through analysis and measurement of a CNC milling machine, designed and assembled in the university. Through the use of 3D scanning, and analyzing images of the machined samples, and its original virtual files, it was possible to compare the sizes of these samples in counterposition to the original virtual dimensions, we can state that the distortions between the real and virtual, are within acceptable limits for this type of equipment. As a secondary objective, this work seeks to disseminate and make more accessible the use of these technologies.
Resumo:
Pós-graduação em Educação para a Ciência - FC
Resumo:
This research presents an investigation about the relevance of visualization in teaching geometry. Our interest turns to analyzing the use of technology in teaching geometry, seeking to highlight their contribution to learning. The students of today - second decade of the 21st century - require that, each time more, the school move towards the integration of technologies for teaching since tablets, smartphone, netbook, notebook are items present on daily life of most students. Thereby, we investigate, taking the phenomenological orientation, the potential of educational software, especially the Geogebra 3D, directed at teaching math and favoring the work with the geometry viewing. At work we bring some theoretical considerations about the importance of viewing for the geometric learning and the use of technologies. We build an intervention proposal for the classroom of the 7th year of elementary school with tasks aimed at visual exploration and allow the teacher to work the concept of volume of geometric solids
Resumo:
This research presents an investigation about the relevance of visualization in teaching geometry. Our interest turns to analyzing the use of technology in teaching geometry, seeking to highlight their contribution to learning. The students of today - second decade of the 21st century - require that, each time more, the school move towards the integration of technologies for teaching since tablets, smartphone, netbook, notebook are items present on daily life of most students. Thereby, we investigate, taking the phenomenological orientation, the potential of educational software, especially the Geogebra 3D, directed at teaching math and favoring the work with the geometry viewing. At work we bring some theoretical considerations about the importance of viewing for the geometric learning and the use of technologies. We build an intervention proposal for the classroom of the 7th year of elementary school with tasks aimed at visual exploration and allow the teacher to work the concept of volume of geometric solids
Resumo:
Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coil, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAD) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut CAD hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C265) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 angstrom, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To compare the agreement of multiplanar and rendering modes in the assessment fetal atrioventricular valves (mitral and tricuspid) areas by three-dimensional (3D) ultrasonography using the software spatio-temporal image correlation (STIC). Methods: We conducted a prospective cross-sectional study with normal pregnant women, with single fetuses, between 18-33 weeks. To measure the areas, we used the plan of four-chamber view. In the case of multiplanar, the plane was rotated on the axis "Z" form the heart to position at 9h. For rendering, the green line (region of interest - ROI) was placed from the atria of the heart perpendicular to the crux. The agreement was assessed by a Bland-Altman (limits of agreement) using the relative difference between the measures: ((rendering mode) - (multiplanar mode)) / (average). Results: 328 fetuses were evaluated. We have not identified the occurrence of systematic error between methods: the average relative difference was 1.62% (-2.07% to 5.32%, confidence interval 95%) in the mitral and 1.77% (- 1.08% to 4.62%) in the tricuspid valve. The limits of agreement between methods were -65.26% to 68.51% for the mitral and -49.91% to 53.45% for the tricuspid. Conclusions: There was no systematic error between modes and thus the observed values for the area of fetal atrioventricular valves can be used for comparisons needs to be corrected. However, relatively large variations may be observed when repeating the measurement area by different modes.