987 resultados para Socio-spatial differentiation
Resumo:
Extensive population structuring is known to occur in Anopheles darlingi, the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation-dispersal-drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 854-866.
Resumo:
As to many Latin american countries, the impacts of the recent economic globalization on the Brazilian economy have revealed a diversified tendency in spatial development when regional economic indicators are observed. This is due to the specificities or each region, as regard their sector structure, the availability of human resources and the degree of technological innovation undertaken by local enterprises. From a situation of regional inequalities observed in lhe socio-economic levels of development at the beginning of the eighties the dynamics of the Brazilian regional evolution has presented different speeds and intensities in the several spaees. This paper aims to evaluate the dynamics of Brazilian regional development during the 1985-95 period and the impacts over the working population and regional disparities in order to offer some elements to assist social and economic policy. For this purpose Dispersion Quotients and Dispersion lntensity Coefficients were calculated based on two variables, the Regional Gross Domestic Product anel the Working Population. The results of the analysis confirm the existence of considerable regional disparities and it was observed that thc sector and regional redistribution of the GDP indicate that in a general way, no remarkable changes occurred in the regional development in the period. The results show that although the economic policies did stimulate a global convergence process of the per capita product among regions, those policies did not attenuate economic dynamism concentration to the desired extent.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Geographic differentiation and sexual dimorphism in eighteen morphometric characters of Lutosa brasiliensis (Orthoptera: Henicidae) collected in eight localities of the State of São Paulo (Brazil) were analysed. A two-way Multivariate Analysis of Variance (MONOVA) was used to assess simultaneously the effects of sex and geographic location (plus their interaction) on morphometric variability. The spatial patterns of variation were analysed by Factor and Spatial Autocorrelation Analyses (Moran's I coefficient in four distance classes). Both indicate that the main direction of variation is, for males and females, a north-south cline in overall body size. In females, however, ovipositor length is not correlated with overall body size and displays a different pattern of variation over geographic space, indicating that distinct evolutionary forces produced the geographic differentiation in the species.
Resumo:
Includes bibliography
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geografia - FCT
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.
Resumo:
Background: In a classical study, Durkheim mapped suicide rates, wealth, and low family density and realized that they clustered in northern France. Assessing others variables, such as religious society, he constructed a framework for the analysis of the suicide, which still allows international comparisons using the same basic methodology. The present study aims to identify possible significantly clusters of suicide in the city of Sao Paulo, and then, verify their statistical associations with socio-economic and cultural characteristics. Methods: A spatial scan statistical test was performed to analyze the geographical pattern of suicide deaths of residents in the city of Sao Paulo by Administrative District, from 1996 to 2005. Relative risks and high and/or low clusters were calculated accounting for gender and age as co-variates, were analyzed using spatial scan statistics to identify geographical patterns. Logistic regression was used to estimate associations with socioeconomic variables, considering, the spatial cluster of high suicide rates as the response variable. Drawing from Durkheim's original work, current World Health Organization (WHO) reports and recent reviews, the following independent variables were considered: marital status, income, education, religion, and migration. Results: The mean suicide rate was 4.1/100,000 inhabitant-years. Against this baseline, two clusters were identified: the first, of increased risk (RR = 1.66), comprising 18 districts in the central region; the second, of decreased risk (RR = 0.78), including 14 districts in the southern region. The downtown area toward the southwestern region of the city displayed the highest risk for suicide, and though the overall risk may be considered low, the rate climbs up to an intermediate level in this region. One logistic regression analysis contrasted the risk cluster (18 districts) against the other remaining 78 districts, testing the effects of socioeconomic-cultural variables. The following categories of proportion of persons within the clusters were identified as risk factors: singles (OR = 2.36), migrants (OR = 1.50), Catholics (OR = 1.37) and higher income (OR = 1.06). In a second logistic model, likewise conceived, the following categories of proportion of persons were identified as protective factors: married (OR = 0.49) and Evangelical (OR = 0.60). Conclusions: This risk/ protection profile is in accordance with the interpretation that, as a social phenomenon, suicide is related to social isolation. Thus, the classical framework put forward by Durkheim seems to still hold, even though its categorical expression requires re-interpretation.
Resumo:
The presented study carried out an analysis on rural landscape changes. In particular the study focuses on the understanding of driving forces acting on the rural built environment using a statistical spatial model implemented through GIS techniques. It is well known that the study of landscape changes is essential for a conscious decision making in land planning. From a bibliography review results a general lack of studies dealing with the modeling of rural built environment and hence a theoretical modelling approach for such purpose is needed. The advancement in technology and modernity in building construction and agriculture have gradually changed the rural built environment. In addition, the phenomenon of urbanization of a determined the construction of new volumes that occurred beside abandoned or derelict rural buildings. Consequently there are two types of transformation dynamics affecting mainly the rural built environment that can be observed: the conversion of rural buildings and the increasing of building numbers. It is the specific aim of the presented study to propose a methodology for the development of a spatial model that allows the identification of driving forces that acted on the behaviours of the building allocation. In fact one of the most concerning dynamic nowadays is related to an irrational expansion of buildings sprawl across landscape. The proposed methodology is composed by some conceptual steps that cover different aspects related to the development of a spatial model: the selection of a response variable that better describe the phenomenon under study, the identification of possible driving forces, the sampling methodology concerning the collection of data, the most suitable algorithm to be adopted in relation to statistical theory and method used, the calibration process and evaluation of the model. A different combination of factors in various parts of the territory generated favourable or less favourable conditions for the building allocation and the existence of buildings represents the evidence of such optimum. Conversely the absence of buildings expresses a combination of agents which is not suitable for building allocation. Presence or absence of buildings can be adopted as indicators of such driving conditions, since they represent the expression of the action of driving forces in the land suitability sorting process. The existence of correlation between site selection and hypothetical driving forces, evaluated by means of modeling techniques, provides an evidence of which driving forces are involved in the allocation dynamic and an insight on their level of influence into the process. GIS software by means of spatial analysis tools allows to associate the concept of presence and absence with point futures generating a point process. Presence or absence of buildings at some site locations represent the expression of these driving factors interaction. In case of presences, points represent locations of real existing buildings, conversely absences represent locations were buildings are not existent and so they are generated by a stochastic mechanism. Possible driving forces are selected and the existence of a causal relationship with building allocations is assessed through a spatial model. The adoption of empirical statistical models provides a mechanism for the explanatory variable analysis and for the identification of key driving variables behind the site selection process for new building allocation. The model developed by following the methodology is applied to a case study to test the validity of the methodology. In particular the study area for the testing of the methodology is represented by the New District of Imola characterized by a prevailing agricultural production vocation and were transformation dynamic intensively occurred. The development of the model involved the identification of predictive variables (related to geomorphologic, socio-economic, structural and infrastructural systems of landscape) capable of representing the driving forces responsible for landscape changes.. The calibration of the model is carried out referring to spatial data regarding the periurban and rural area of the study area within the 1975-2005 time period by means of Generalised linear model. The resulting output from the model fit is continuous grid surface where cells assume values ranged from 0 to 1 of probability of building occurrences along the rural and periurban area of the study area. Hence the response variable assesses the changes in the rural built environment occurred in such time interval and is correlated to the selected explanatory variables by means of a generalized linear model using logistic regression. Comparing the probability map obtained from the model to the actual rural building distribution in 2005, the interpretation capability of the model can be evaluated. The proposed model can be also applied to the interpretation of trends which occurred in other study areas, and also referring to different time intervals, depending on the availability of data. The use of suitable data in terms of time, information, and spatial resolution and the costs related to data acquisition, pre-processing, and survey are among the most critical aspects of model implementation. Future in-depth studies can focus on using the proposed model to predict short/medium-range future scenarios for the rural built environment distribution in the study area. In order to predict future scenarios it is necessary to assume that the driving forces do not change and that their levels of influence within the model are not far from those assessed for the time interval used for the calibration.
Resumo:
This doctoral thesis aims at contributing to the literature on transition economies focusing on the Russian Federations and in particular on regional income convergence and fertility patterns. The first two chapter deal with the issue of income convergence across regions. Chapter 1 provides an historical-institutional analysis of the period between the late years of the Soviet Union and the last decade of economic growth and a presentation of the sample with a description of gross regional product composition, agrarian or industrial vocation, labor. Chapter 2 contributes to the literature on exploratory spatial data analysis with a application to a panel of 77 regions in the period 1994-2008. It provides an analysis of spatial patterns and it extends the theoretical framework of growth regressions controlling for spatial correlation and heterogeneity. Chapter 3 analyses the national demographic patterns since 1960 and provides a review of the policies on maternity leave and family benefits. Data sources are the Statistical Yearbooks of USSR, the Statistical Yearbooks of the Russian Soviet Federative Socialist Republic and the Demographic Yearbooks of Russia. Chapter 4 analyses the demographic patterns in light of the theoretical framework of the Becker model, the Second Demographic Transition and an economic-crisis argument. With national data from 1960, the theoretically issue of the pro or countercyclical relation between income and fertility is graphically analyzed and discussed, together with female employment and education. With regional data after 1994 different panel data models are tested. Individual level data from the Russian Longitudinal Monitoring Survey are employed using the logit model. Chapter 5 employs data from the Generations and Gender Survey by UNECE to focus on postponement and second births intentions. Postponement is studied through cohort analysis of mean maternal age at first birth, while the methodology used for second birth intentions is the ordered logit model.
Resumo:
This study is on albacore (Thunnus alalunga, Bonnaterre 1788), an epi- and mesopelagic oceanic tuna species cosmopolitan in the tropical and temperate waters of all oceans including the Mediterranean Sea, extending in a broad band between 40°N and 40°S. What it’s known about albacore population structure is based on different studies that used fisheries data, RFLP, mtDNA control region and nuDNA markers, blood lectins analysis, individual tags and microsatellite. At the moment, for T. alalunga six management units are recognized: the North Pacific, South Pacific, Indian, North Atlantic, South Atlantic and Mediterranean stocks. In this study I have done a temporal and spatial comparison of genetic variability between different Mediterranean populations of Thunnus alalunga matching an historical dataset ca. from 1920s composed of 43 individuals divided in 3 populations (NADR, SPAIN and CMED) with a modern dataset composed of 254 individuals and 7 populations (BAL, CYP, LIG, TYR, TUR, ADR, ALB). The investigation was possible using a panel of 94 nuclear SNPs, built specifically for the target species at the University of Basque Country UPV/EHU. First analysis done was the Hardy-Weinberg, then the number of clusters (K) was determined using STRUCTURE and to assess the genetic variability, allele frequencies, the average number of alleles per locus, expected (He) and observed (Ho) heterozygosis, and the index of polymorphism (P) was used the software Genetix. Historical and modern samples gives different results, showing a clear loss of genetic diversity over time leading to a single cluster in modern albacore instead of the two found in historical samples. What this study reveals is very important for conservation concerns, and additional research endeavours are needed.