475 resultados para SnO2 varistor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes particle aggregation process during gelation of SnO2 hydrosols. The effect of the concentration of SnO2 colloidal particles on the kinetics of gelation of hydrosols containing PVA (poly(vinyl alcohol)) was analysed by dynamic rheological measurements. The complex viscosity and the storage and loss moduli have been measured during the sol-gel transition and the results correlated to mass fractal growth, nearly linear growth models, and scalar percolation theory. The analysis of the experimental results shows that a linear aggregation occurs in the initial step of the gelation followed by a fractal growth to form a three-dimensional network. Near the gel point this physical gel exhibits the typical scaling expected from an electrical percolation analogy. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antimony doped tin oxide thin films were deposited on glass by a chemical route derived from Pechini method. Particular emphasis was given to the microstructure of crystallized films. Crystalline phase formation was studied by grazing incident X-ray diffraction and by thermal analyses. Scanning electron microscopy was carried out for microstructure characterization, surface roughness was observed using scanning tunneling microscope and the optical transmittance measurements were performed in the wavelength range of 200-800 nm. (C) 2002 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline SnO2 quantum dots were synthesized at room temperature by hydrolysis reaction of SnCl2. The addition of tetrabutyl ammonium hydroxide and the use of hydrothermal treatment enabled one to obtain tin dioxide colloidal suspensions with mean particle radii ranging from 1.5 to 4.3 nm. The photoluminescent properties of the suspensions were studied. The particle size distribution was estimated by transmission electron microscopy. Assuming that the maximum intensity photon energy of the photoluminescence spectra is related to the band gap energy of the system, the size dependence of the band gap energies of the quantum-confined SnO2 particles was studied. This dependence was observed to agree very well with the weak confinement regime predicted by the effective mass model. This might be an indication that photoluminescence occurs as a result of a free exciton decay process. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The controlled growth of SnO2 nanoparticles for gas sensor applications is reported by these authors. Nb2O5 additive is used to control nucleation and growth of the SnO2 (see Figure), which is synthesized by the polymeric precursor method. Preliminary gas sensing measurements are performed and it is demonstrated that the response time of the Nb2O5-doped SnO2 is faster than that of the undoped material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technological interest in transparent conductive oxide films (TCOs) has motivated several works in processing techniques, in order to obtain adequate routes to application. In this way, this work describes a new route to obtain antimony-doped tin oxide (ATO) films, based in colloidal dispersions of oxide nanocrystals. The nanoparticles were obtained by a hydrolisis method, using SnCl2 and SbCl3 in ethanolic solutions. The residual halides were removed by dyalisis, obtaining a limpid and transparent colloidal suspension. By this, the method offers the advantage of producing ultrathin films without organic contaminants. This route was employed to produce films with 5, 10, 14, and 18 mol% Sb doping, with thickness ranging from 40 to 70 nm. The physical characterization of the samples showed a uniform layer deposition, resulting in good packing density and high transmittance. A preliminar electrical study confirmed the low electrical resistivity even in the ultrathin films, in such level similar of reported data. The method described is similar in some aspects to layer-by-layer (LbL) techniques, allowing fine control of thickness and interesting properties for ultrathin films, however, with low cost when compared to similar routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate optically excited electronic transport in Er-doped SnO2, thin films are excited with the fourth harmonic of an Nd:YAG laser (266nm) at low temperature, yielding conductivity decay when the illumination is removed. Inspection of these electrical characteristics aims knowledge for electroluminescent devices operation. Based on a proposed model where trapping defects present thermally activated cross section, the capture barrier is evaluated as 140, 108, 100 and 148 meV for doped SnO2, thin films with 0.0, 0.05, 0. 10 and 4.0 at% of Er, respectively. The undoped film has vacancy levels as dominating, whereas for doped films. there are two distinct trapping centers: Er3+ substitutional at Sn lattice sites and Er3+ located at grain boundary. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium copper titanate (CaCu3Ti4O12) ceramic varistors were prepared by solid-state method. The samples were several times heat treated in vacuum and the evolution of electrical characteristics were monitored by current density versus electric field measurements and impedance spectroscopy. Repeated heat treatments in vacuum (900 degrees C for 1 h, 0.01 Torr) lead to a desorption of oxygen adsorbed at the grain boundaries and consequently to a degradation of the varistor properties. During further successive heat treatments some oxygen from the grain interior moves to the grain boundary thereby partially restoring the varistor properties. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnO2:m mol% CoO (0.5 less than or equal to m less than or equal to 6.0) ceramic specimens were studied by impedance spectroscopy in the 5 Hz-13 MHz frequency range during heating cold-pressed specimens from room temperature to 1250 degrees C. The electrical resistivity during sintering decreases from 4 to 6 orders of magnitude in the 400-1500 K temperature range depending on the amount of CoO. An increase in electrical resistivity in the 570-670 K range is related to the release of adsorbed water. The results for the 970-1500 K show that the higher the amount of the CoO addition, the lower is the temperature at which SnO2:CoO reaches a minimum electrical resistivity. This suggests that oxygen point defects created by dissolution of cobalt ions in the SnO2 lattice are controlling the densification rate of these ceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we describe a new route to synthesize ultrafine rare earth doped and undoped tin oxide particles for catalytic applications. The catalytic behavior observed in SnO2 samples suggests the control of the catalytic activity and the selectivity of the products by the segregation of a layer of a rare earth compound with the increase of the heat-treatment temperature. The ultrafine particles were characterized by means of BET, XPS, TEM, XRD and Rietveld refinement. It was demonstrated that the effects of the dopant on the methanol decomposition reaction and on the H-2 selectivity were correlated with the segregation of a rare earth layer on the tin oxide samples. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline tin oxide thin films were prepared from ethanol solution of SnCl2.H2O (concentrations: 0.05, 0.1, 0.2 and 0.4 mol/dm(3)) at different substrate temperatures ranging from 300 to 450 degreesC. The kinetic deposition processes were studied in terms of various process parameters. The crystal phases, crystalline structure, grain size and surface morphology are revealed in accordance to X-ray diffractometry and scanning electron microscopy (SEM). Texture coefficients (TCs) for (110), (2 0 0), (2 11) and (3 0 1) reflections of the tetragonal SnO2 were calculated. Structural characteristics of deposited films with respect to varying precursor chemistry and substrate temperature are presented and discussed. (C) 2003 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports the preparation and characterization of (SnO2) thin films doped with 7 mol% Sb2O3. The films were prepared by the polymeric precursor method, and deposited by spin-coating, all of them were deposited on amorphous silica substrate. Then, we have studied the thickness effect on the microstrutural, optical and electric properties of these samples. The microstructural characterization was carried out by X-ray diffraction (XRD) and scanning tunneling microscopy (STM). The electrical resistivity measurements were obtained by the van der Pauw four-probe method. UV-visible spectroscopy and ellipsometry were carried out for the optical characterization. The films present nanometric grains in the order of 13 nm, and low roughness. The electrical resistivity decreased with the increase of the film thickness and the smallest measured value was 6.5 x 10(-3) Omega cm for the 988 nm thick film. The samples displayed a high transmittance value of 80% in the visible region. The obtained results show that the polymeric precursor method is effective for the TCOs manufacturing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnO2-based materials are used as sensors, catalysts and in electro-optical devices. This work aims to synthesize and characterize the SnO2/Sb2O3-based inorganic pigments, obtained by the polymeric precursor method, also known as Pechini method (based on the metallic citrate polymerization by means of ethylene glycol). The precursors were characterized by thermogravimetry (TG) and differential thermal analysis (DTA). After characterization, the precursors were heat-treated at different temperatures and characterized by X-ray diffraction. According to the TG/DTA curves basically two-step mass loss process was observed: the first one is related to the dehydration of the system; and the second one is representative to the combustion of the organic matter. Increase of the heat treatment temperature from 500 to 600 degrees C and 700 degrees C resulted higher crystallinity of the formed product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SnO2 supported membranes, presenting 3.0 nm average pore size, have been produced by sol casting on alumina tubular substrate using aqueous colloidal suspensions prepared by sol-gel route. The selectivity and flux throughout SnO2 membrane were analyzed by permeation experiments, using a laboratory tangential filtration pilot equipped with a monotubular membrane. To evaluate the effect of the surface charge at the membrane-solution interface, aqueous salt solutions (NaCl, Na2SO4, CaCl, and CaSO4) of different ionic strength have been filtered and the results correlated with the values of zeta potential measured at several pH. The results show that the retention coefficient is dependent on the electrolyte present in aqueous solution decreasing as: (dication, monoanion) > (monocation, monoanion) approximate to (monocation, dianion) > (dication, dianion). The surface charge and the cation adsorption capacity play a determinant role in these selectivity sequences. (C) 2001 Elsevier B.V. B.V. All rights reserved.