277 resultados para Slough
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Yeast populations in the Shark River Slough of the Florida Everglades, USA, were examined during a 3-year period (2002–2005) at six locations ranging from fresh water marshes to marine mangroves. Seventy-four described species (33 ascomycetes and 41 basidiomycetes) and an approximately equal number of undescribed species were isolated during the course of the investigation. Serious human pathogens, such as Candida tropicalis, were not observed, which indicates that their presence in coastal waters is due to sources of pollution. Some of the observed species were widespread throughout the fresh water and marine habitats, whereas others appeared to be habitat restricted. Species occurrence ranged from prevalent to rare. Five representative unknown species were selected for formal description. The five species comprise two ascomycetes: Candida sharkiensis sp. nov. (CBS 11368T) and Candida rhizophoriensis sp. nov. (CBS 11402T) (Saccharomycetales, Metschnikowiaceae), and three basidiomycetes: Rhodotorula cladiensis sp. nov. (CBS 10878T) in the Sakaguchia clade (Cystobasidiomycetes), Rhodotorula evergladiensis sp. nov. (CBS 10880T) in the Rhodosporidium toruloides clade (Microbotryomycetes, Sporidiobolales) and Cryptococcus mangaliensis sp. nov. (CBS 10870T) in the Bulleromyces clade (Agaricomycotina, Tremellales).
Resumo:
We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.
Resumo:
Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 − ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.
Resumo:
Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.
Resumo:
1. Faster growing, larger and/or more aggressive crayfish species are predicted to dominate permanent waterbodies. We tested this prediction using a 9 year dataset for two species of crayfish (Procambarus alleni and Procambarus fallax) co-existing in a sub-tropical flowing slough in southern Florida. Using a series of laboratory and mesocosm experiments we also compared life history traits and performance of the respective species to test mechanisms that could explain dominance shifts in the local crayfish assemblages. 2. Over the 9-year period, P. alleni densities were the greatest in shallower, shorterhydroperiod areas bordering the slough, while P. fallax densities were higher in deeper, longer-hydroperiod central areas. These areas were separated by 0.8–2 km of continuous wetland with no apparent barriers to movement between them. 3. Density of P. fallax was not strongly affected by any measures of hydrological variation, while P. alleni density increased with more severe drought conditions. Following the strongest droughts, P. alleni colonized areas in the centre of the slough where they had been absent or scarce in wetter years. 4. We conducted experiments to compare growth rates, drought tolerance, and competitive dominance of these species. P. alleni survived drought conditions better, had higher growth rates, and was the dominant competitor for space and food. While drought probably limits P. fallax in the drier slough habitats, neither drought sensitivity nor interspecific competition with P. fallax can explain decreases of P. alleni with wetter conditions. 5. Our results indicate that a competition-colonization tradeoff cannot explain the crayfish compositional dynamics in this wetland because P. alleni is both the best competitor and the best at surviving in and colonizing areas with the strongest droughts. Future attention should focus on the potential for selective effects of predators that co-vary with hydrology. 6. The traits (large size, fast growth, competitive dominance) exhibited by P. alleni, which is absent in long-hydroperiod wetlands, are those exhibited by dominant crayfish in permanent lakes and streams containing fish. Although these traits make crayfish less vulnerable to fish in some lakes and streams, life-history models of community structure across permanence gradients suggest the opposite traits should be favoured for co-existence with fish.
Resumo:
The concentrations of tritium (3H) and helium isotopes (3He and4He) were used as tracers of groundwater flow in the surficial aquifer system (SAS) beneath Everglades National Park (ENP), south Florida. From ages determined by 3H/3He dating techniques, groundwater within the upper 28 m originated within the last 30 years. Below 28 m, waters originated prior to 30 years before present with evidence of mixing at the interface. Interannual variation of the 3H/3He ages within the upper 28 m was significant throughout the 3 year investigation, corresponding with varying hydrologic conditions. In the region of Taylor Slough Bridge, younger groundwater was consistently detected below older groundwater in the Biscayne Aquifer, suggesting preferential flow to the lower part of the aquifer. An increase in 4He with depth in the SAS indicated that radiogenic 4He produced in the underlying Hawthorn Group migrates into the SAS by diffusion. Higher Δ4He values in brackish groundwaters compared to fresh waters from similar depths suggested a possible enhanced vertical transport of4He in the seawater mixing zone. Groundwater salinity measurements indicated the presence of a wide (6–28 km) seawater mixing zone. Comparison of groundwater levels with surface water levels in this zone indicated the potential for brackish groundwater discharge to the overlying Everglades surface water.
Resumo:
The freshwater Everglades is a complex system containing thousands of tree islands embedded within a marsh-grassland matrix. The tree island-marsh mosaic is shaped and maintained by hydrologic, edaphic and biological mechanisms that interact across multiple scales. Preserving tree islands requires a more integrated understanding of how scale-dependent phenomena interact in the larger freshwater system. The hierarchical patch dynamics paradigm provides a conceptual framework for exploring multi-scale interactions within complex systems. We used a three-tiered approach to examine the spatial variability and patterning of nutrients in relation to site parameters within and between two hydrologically defined Everglades landscapes: the freshwater Marl Prairie and the Ridge and Slough. Results were scale-dependent and complexly interrelated. Total carbon and nitrogen patterning were correlated with organic matter accumulation, driven by hydrologic conditions at the system scale. Total and bioavailable phosphorus were most strongly related to woody plant patterning within landscapes, and were found to be 3 to 11 times more concentrated in tree island soils compared to surrounding marshes. Below canopy resource islands in the slough were elongated in a downstream direction, indicating soil resource directional drift. Combined multi-scale results suggest that hydrology plays a significant role in landscape patterning and also the development and maintenance of tree islands. Once developed, tree islands appear to exert influence over the spatial distribution of nutrients, which can reciprocally affect other ecological processes.
Resumo:
Florida Bay is a unique subtropical estuary that while historically oligotrophic, has been subjected to both natural and anthropogenic stressors, including hurricanes, coastal eutrophication and other impacts. These stressors have resulted in degradation of water quality in the past several decades, most evidenced by reoccurring blooms of the picocyanobacterium Synechococcus spp. Major nutrient inputs consist of freshwater flows to the eastern region from runoff and regulated canal releases, inputs from the Everglades to the central region via Taylor Slough, exchanges with the Gulf of Mexico, which include intermittent Shark River inputs to the western region, stormwater and wastewater from the Florida Keys, and atmospheric deposition. These nutrient inputs have resulted in a transition from strong phosphorus (P) limitation of phytoplankton in the eastern bay to nitrogen (N) limitation in the western bay. Large blooms of Synechococcus were most pronounced in the central bay region, in the area of transition between P and N limitation, in the mid-1990s. Although non-toxic, these blooms, which have continued intermittently through the early 2000s, resulted in significant sea-grass and benthic organism mortalities. A new suite of stressors in 2005, including the passages of Hurricanes Katrina, Rita, and Wilma, additional canal releases, and the initiation of road construction to widen the main roadway leading to the Keys, were correlated with a large Synechococcus bloom in the previously clear, strongly P- limited, northeastern region of the bay. Sustained for 3 years, this bloom was accompanied by a shift from P limitation to N limitation during its course. Nutrient bioassay experiments suggest that this bloom persisted due to the ability of Synechococcus to access organic N and P sources, microbial and geochemical cycling of organic and inorganic nutrients in the water column and between the water column and sediments (both suspended particles and benthos), and decreased grazing by benthic fauna due to their die-off.
Resumo:
Estuaries and estuarine wetlands are ecologically and societally important systems, exhibiting high rates of primary production that fuel offshore secondary production. Hydrological processes play a central role in shaping estuarine ecosystem structure and function by controlling nutrient loading and the relative contributions of marine and terrestrial influences on the estuary. The Comprehensive Everglades Restoration Plan includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The existing seasonal and inter-annual variability of water flow and source in Taylor River affords the opportunity to investigate relationships between ecosystem function and hydrologic forcing. Estimates of aquatic ecosystem metabolism, derived from free-water, diel changes in dissolved oxygen, were combined with assessments of wetland flocculent detritus quality and transport within the context of seasonal changes in Everglades hydrology. Variation in ecosystem gross primary production and respiration were linked to seasonal changes in estuarine water quality using multiple autoregression models. Furthermore, Taylor River was observed to be net heterotrophic, indicating that an allochthonous source of carbon maintained ecosystem respiration in excess of autochthonous primary production. Wetland-derived detritus appears to be an important vector of energy and nutrients across the Everglades landscape; and in Taylor River, is seasonally flushed into ponded segments of the river where it is then respired. Lastly, seasonal water delivery appears to govern feedbacks regulating water column phosphorus availability in the Taylor River estuary.
Resumo:
Eutrophication from anthropogenic nutrient enrichment is a primary threat to the oligotrophic freshwater marshes of southern Florida. Macrophyte and periphyton response to increased phosphorus (P) has been well documented in both correlative and experimental studies, but the response of consumer communities remains poorly understood, especially in southern marl prairies. We conducted a P-loading experiment in in situ mesocosms in Taylor Slough, Everglades National Park, and examined the response of macroinvertebrate communities. Mesocosms at two sites were loaded weekly with P at four levels: control (0 g P/m2/yr), low (0.2 g P/m2/yr), intermediate (0.8 g P/m2/yr), and high (3.2 g P/m2/ yr). After ∼2 yrs of P-loading, macroinvertebrates were sampled using periphyton mat and benthic floc cores. Densities of macroinvertebrate taxa (no./g AFDM) were two to 16 times higher in periphyton mats than benthic floc. Periphyton biomass decreased with enrichment at one site, and periphyton was absent from many intermediate and all high P treatments at both sites. Total macroinvertebrate density in periphyton mats increased with intermediate P loads, driven primarily by chironomids and nematodes. Conversely, total macroinvertebrate density in benthic floc decreased with enrichment, driven primarily by loss of chironomids and ceratopogonids (Dasyhelea). This study suggests that macroinvertebrate density increases with enrichment until periphyton mats are lost, after which it decreases, and mat infauna fail to move into benthic substrates in response to mat loss. These results were noted at nutrient levels too low to yield anoxia, and we believe that the decrease of macroinvertebrate density resulted from a loss of habitat. This work illustrates the importance of periphyton mats as habitat for macroinvertebrates in the Everglades. This study also indicates that in this system, macroinvertebrate sampling should be designed to target periphyton mats or conducted with special attention to inclusion of substrates relative to their coverage.
Resumo:
Calcareous floating periphyton mats in the southern Everglades provide habitat for a diverse macroinvertebrate community that has not been well characterized. Our study described this community in an oligotrophic marsh, compared it with the macroinvertebrate community associated with adjacent epiphytic algae attached to macrophytes in the water column, and detected spatial patterns in density and community structure. The floating periphyton mat (floating mat) and epiphytic algae in the water column (submerged epiphyton) were sampled at 4 sites (1 km apart) in northern Shark River Slough, Everglades National Park (ENP), in the early (July) and late (November) wet season. Two perpendicular 90-m transects were established at each site and 100 samples were taken in a nested design. Sites were located in wet-prairie spikerush-dominated sloughs with similar water depths and emergent macrophyte communities. Floating mats were sampled by taking cores (6-cm diameter) that were sorted under magnification to enumerate infauna retained on a 250-μm-mesh sieve and with a maximum dimension >1 mm. Our results showed that floating mats provide habitat for a macroinvertebrate community with higher densities (no. animals/g ash-free dry mass) of Hyalella azteca, Dasyhelea spp., and Cladocera, and lower densities of Chironomidae and Planorbella spp. than communities associated with submerged epiphyton. Densities of the most common taxa increased 3× to 15× from early to late wet season, and community differences between the 2 habitat types became more pronounced. Floating-mat coverage and estimated floating-mat biomass increased 20 to 30% and 30 to 110%, respectively, at most sites in the late wet season. Some intersite variation was observed in individual taxa, but no consistent spatial pattern in any taxon was detected at any scale (from 0.2 m to 3 km). Floating mats and their resident macroinvertebrate communities are important components in the Everglades food web. This community should be included in environmental monitoring programs because degradation and eventual loss of the calcareous periphyton mat is associated with P enrichment in this ecosystem.
Resumo:
Fluorescence properties of whole water samples and molecular characteristics of ultrafiltrated dissolved organic matter (UDOM > 1,000 D) such as lignin phenol and neutral sugar compositions and 13C nuclear magnetic resonance (NMR) spectra were determined along a freshwater to marine gradient in Everglades National Park. Furthermore, UDOM samples were categorized by hierarchical cluster analysis based on their pyrolysis gas chromatography/mass spectrometry products. Fluorescence properties suggest that autochthonous DOM leached/exuded from biomass is quantitatively important in this system. 13C NMR spectra showed that UDOM from the oligotrophic Taylor Slough (TS) and Florida Bay (FB) ecosystems has low aromatic C (13% ± 3% for TS; 2% ± 2% for FB) and very high O-alkyl C (54% ± 4% for TS; 75% ± 4% for FB) concentrations. High O-alkyl C concentrations in FB suggest seagrass/phytoplankton communities as dominant sources of UDOM. The amount of neutral sugars was not appreciably different between the TS and FB sites (115 ± 12 mg C g C-1 UDOM) but their concentrations suggest a low level of diagenesis and high production rates of this material in this oligotrophic environment. Total yield of lignin phenols (vanillyl + syringyl phenols) in TS was low (0.20–0.39 mg 100 mg C-1 UDOM) compared with other riverine environments and even lower in FB (0.04–0.07 mg 100 mg C-1 UDOM) and could be a result of photodegradation and/or dilution by other utochthonous DOM. The high O-alkyl and low aromatic nature of this UDOM suggests significant biogenic inputs (as compared with soils) and limited bioavailability in this ecosystem.
Resumo:
Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (∼1 km2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999–2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI,http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999–2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory during the dry season where surface flow in the area is confined to the Taylor River channel. The model also provided guidance on the importance of capturing the overland flow component, which enters the area as sheet flow during the rainy season. Overall, the modeling approach is suitable to reach better understanding of the water budget in the mangrove region. However, more detailed field data is needed to ascertain model predictions by further calibrating overland flow parameters.