918 resultados para Sleep spindle
Resumo:
Introduction : Plusieurs études épidémiologiques et de laboratoire basées sur des estimations subjectives de la durée et de la qualité du sommeil suggèrent que celles-ci pourraient être associées à une augmentation du risque de troubles métaboliques ou cardiovasculaires. Objectif : Dans cette étude nous avons examiné les associations entre les caractéristiques du sommeil évaluées objectivement par Polysomnographie (PSG) et le syndrome métabolique ainsi que ses composants (hypertension, diabète, obésité). Matériel et méthodes : Nous avons analysé les données de 2162 sujets de la population générale (dont le 51.2% étaient des femmes, âge moyen : 58.4±11.1 ans, fourchette d'âge: 40.5-84.4) qui ont participé à l'étude Hypnolaus. Tous les sujets ont eu une évaluation clinique et biologique et ils ont bénéficié d'une PSG complète à domicile. Résultats : Les analyses univariées ont montré que les sujets présentant un syndrome métabolique avaient une diminution du temps total de sommeil, du sommeil lent profond, du sommeil paradoxal et de l'efficacité du sommeil, ainsi qu'une augmentation de l'index de microéveils par rapport aux sujets qui n'avaient pas un syndrome métabolique. Nous avons aussi trouvé des différences significatives de la structure du sommeil en fonction de la présence ou de l'absence d'hypertension, de diabètes et de surpoids/obésité. Cependant, ces différences s'atténuent après ajustement pour des facteurs confondants (âge, genre, tabagisme, prise d'alcool, activité physique, médicaments qui affectent le sommeil, dépression, santé globale et indice de masse corporelle). Seules des différences marginales, non statistiquement significatives, persistaient dans le modèle multiajusté et après stratification en fonction de la présence de troubles respiratoires au cours du sommeil. Conclusions: Dans cet échantillon de la population générale nous avons mis en évidence des associations significatives entre la structure du sommeil et le syndrome métabolique ainsi que ses composants. Cependant, ces associations ne sont pas indépendantes des autres facteurs de risque cardiométabolique connus. Nous en concluons que les variations normales de la durée et de la structure du sommeil contribuent peu ou pas au syndrome métabolique et ses troubles associés.
Resumo:
STUDY OBJECTIVES: Traditionally, sleep studies in mammals are performed using electroencephalogram/electromyogram (EEG/EMG) recordings to determine sleep-wake state. In laboratory animals, this requires surgery and recovery time and causes discomfort to the animal. In this study, we evaluated the performance of an alternative, noninvasive approach utilizing piezoelectric films to determine sleep and wakefulness in mice by simultaneous EEG/EMG recordings. The piezoelectric films detect the animal's movements with high sensitivity and the regularity of the piezo output signal, related to the regular breathing movements characteristic of sleep, serves to automatically determine sleep. Although the system is commercially available (Signal Solutions LLC, Lexington, KY), this is the first statistical validation of various aspects of sleep. DESIGN: EEG/EMG and piezo signals were recorded simultaneously during 48 h. SETTING: Mouse sleep laboratory. PARTICIPANTS: Nine male and nine female CFW outbred mice. INTERVENTIONS: EEG/EMG surgery. MEASUREMENTS AND RESULTS: The results showed a high correspondence between EEG/EMG-determined and piezo-determined total sleep time and the distribution of sleep over a 48-h baseline recording with 18 mice. Moreover, the piezo system was capable of assessing sleep quality (i.e., sleep consolidation) and interesting observations at transitions to and from rapid eye movement sleep were made that could be exploited in the future to also distinguish the two sleep states. CONCLUSIONS: The piezo system proved to be a reliable alternative to electroencephalogram/electromyogram recording in the mouse and will be useful for first-pass, large-scale sleep screens for genetic or pharmacological studies. CITATION: Mang GM, Nicod J, Emmenegger Y, Donohue KD, O'Hara BF, Franken P. Evaluation of a piezoelectric system as an alternative to electroencephalogram/electromyogram recordings in mouse sleep studies.
Resumo:
Summary: Adeno-associated virus type 2 (AAV2) is a small virus containing single-stranded DNA of approximately 4.7kb in size. Both ends of the viral genome are flanked with inverted terminal repeat sequences (ITRs), which serve as primers for viral replication. Previous work in our laboratory has shown that AAV2 DNA with ultraviolet radiation-generated crosslinks (UV-AAV2) provokes a DNA damage response in the host cell by mimicking a stalled replication fork. Infection of cells with UV-AAV2 leads to a p53-and Chk1-mediated cell cycle arrest at the G2/M border of the cell cycle. However, tumour cells lacking the tumour suppressor protein p53 cannot sustain this arrest and enter a prolonged impaired mitosis, the outcome of which is cell death. The aim of my thesis was to investigate how UV-inactivated AAV2 kilts p53-deficient cancer cells. I found that the UV-AAV2-induced DNA damage signalling induces centriole overduplication in infected cells. The virus is able to uncouple the centriole duplication cycle from the cell cycle, leading to amplified centrosome numbers. Chk1 colocalises with centrosomes in the infected cells and the centrosome overduplication is dependent on the presence of Chk1, as well as on the activities of ATR and Cdk kinases and on the G2 arrest. The UV-AAV2-induced DNA damage signalling inhibits the degradation of cyclin B 1 and securin by the anaphase promoting complex, suggesting that the spindle checkpoint is activated in these mitotic cells. Interference with the spindle checkpoint components Mad2 and BubR1 revealed that the UV-AAV2-provoked mitotic catastrophe occurs independently of spindle checkpoint function, This work shows that, in the p53 deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. Résumé Le virus associé à l'adénovirus type 2 (AAV2) est un petit virus contenant un simple brin d'ADN d'environ 4.7kb. Des expériences antérieures dans notre laboratoire ont montré que les liens intramoléculaires sur l'ADN de AAV2 provoqués paz l'irradiation aux ultraviolets (UV) ressemblent à une fourche de réplication bloquée, ce qui provoque une réponse aux dommages à l'ADN dans la cellule hôte. L'infection des cellules avec UV-AAV2 résulte en un arrêt du cycle cellulaire à la transition G2/M entraîné par les protéines ATR et Chk1. Cependant, les cellules tumorales auxquelles il manque le suppresseur de tumeur p53 ne peuvent pas tenir cet arrêt et entrent dans une mitose anormale et prolongée qui se terminera par la mort cellulaire. Le but de ma thèse était d'étudier comment l'AAV2 inactivé par l'irradiation UV tue les cellules cancéreuses n'ayant pas p53. Je montre ici que le signal de dommages à l'ADN induit par UV-AAV2 génère une surduplication des centrioles dans les cellules infectées. Le virus est capable de dissocier le cycle de duplication du centriole du cycle cellulaire ce qui crée un nombre amplifié de centrosomes. Chk1 est co-localisé avec le centrosome dans les cellules infectées et la swduplication du centrosome est dépendante de la présence de Chk1, de l'activité des kinases ATR et Cdk et de l'arrêt en G2 de la cellule. Le signal d'ADN endommagé induit par UV-AAV2 réprime la dégradation des protéines cycline B1 et securine par le complexe promoteur de l'anaphase (APC), ce qui suggère que le point de contrôle du fuseau mitotique est activé dans ces cellules en mitose. L'étude d'interférence avec des éléments du point de contrôle du fuseau mitotique, Mad2 et BubR1, a révélé que la catastrophe mitotique provoquée paz UV-AAV2 survient indépendamment du point de contrôle du fuseau mitotique. Ce travail montre que dans les cellules déficientes en p53, UV-AAV2 induit une catastrophe mitotique associée à une surduplication des centrioles dépendant de Chk1 et ayant pour conséquence dramatique la formation de multiples fuseaux mitotiques dans la cellule en mitose.
Resumo:
The term "spindle cell liposarcoma" has been applied to liposarcomas (LPSs) composed predominantly or exclusively of spindled cells. These tumors have been considered variants of well-differentiated LPS (WDL), myxoid LPS, and spindle cell lipoma, suggesting that this is a heterogenous group of lesions. Using strict morphologic criteria and molecular and immunohistochemical analyses, we have identified a homogenous group of spindle cell lipomatous tumors, histologically and genetically distinct from other forms of LPS, which we have called "fibrosarcoma-like lipomatous neoplasm." Cases classified as "spindle cell LPS" or "low-grade LPS with spindle cell features" were reviewed. Final selection criteria included: (1) an exclusive low-grade spindle cell component resembling fibrosarcoma; (2) a mixture of bland fibroblastic cells resembling the preadipocyte and early-adipocyte stage of embryonic fat; and (3) molecular-genetic analysis that excluded other forms of lipomatous tumors. Of the initial 25 cases identified, comparative genomic hybridization (CGH) was uninformative in 2 cases; 5 were reclassified as WDL on the basis of molecular data (MDM2 amplification) and 6 as spindle cell lipoma (CGH profiles with a few gains and losses including a constant loss of chromosome 13 and frequent losses of chromosomes 16 and 6). The 12 remaining cases showed flat CGH profiles; of these cases, 11 were negative for DDIT3 gene rearrangements, and 1 result was uninterpretable. Patients ranged in age from 15 to 82 years (mean 50 y); male patients were affected slightly more often (7:5). Tumors arose in the deep (6) and superficial (3) soft tissue of the groin (4), buttock (3), thigh (2), flank (1), shoulder (1), and paratesticular tissue (1) and ranged in size from 2 to 20 cm (mean 7.5 cm). Clinical follow-up in 11 patients (9 mo to 20 y; mean 68 mo) showed no recurrences or metastases. As defined above, "fibrosarcoma-like lipomatous neoplasm" is a unique lipomatous tumor that should be distinguished from WDL/(low-grade) dedifferentiated LPS and myxoid LPS on combined histologic/molecular features because of its better prognosis.
Resumo:
Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.
Resumo:
Abstract: Asymmetric cell division is important to generate tissue diversity. The Caenorhabditis elegans embryo is well suited to study the mechanisms of asymmetric cell division. In wild type one-cell stage embryos, the spindle sets up along the anterior-posterior axis (AP). During anaphase, the spindle elongates. While the anterior spindle pole is relatively immobile, the posterior spindle pole moves towards the posterior cortex during anaphase leading to an asymmetric spindle position. As a result, the first cleavage gives rise to a large anterior blastomere and a smaller posterior one, which differs also in cell fate determinants. This posterior spindle displacement occurs in response to polarity cues set up along the AP axis by the PAR proteins and is due to imbalanced pulling forces acting on the two spindle poles, with net forces acting on the posterior spindle pole being more extensive than those at the anterior one. The project of my thesis was to characterize the involvement of two new components, gpr-1 and gpr-2, in spindle positioning. These genes encode essentially identical proteins containing a GoLoco motif characteristic of proteins interacting with α subunits of heterotrimeric G protein (Gα). In gpr-1/2(RNAi) embryos and in embryos lacking simultaneously two α subunits, goa-1 and gpa-16, (Ga(RNAi) embryos), there is a minimal posterior displacement of the spindle during anaphase, and the first division is equal. I found that the pulling forces acting on the two spindle poles is weak and equal in gpr-1/2(RNAi) and Gα (RNAi) embryos. I found that GPR-1/2 acts downstream of polarity cues for generation of pulling forces. Furthermore, I showed that GPR-1/2 distribution was enriched at the posterior cortex during metaphase whereas GOA-1 and GPA-16 were uniformly distributed at the cell cortex throughout the cell cycle. Gα subunits oscillate between GDP- and GTP-bound forms. Gα signaling is turned on by GDP/GTP exchange catalyzed by guanine nucleotide exchange factors (GEFs) and turned off by hydrolysis of GTP catalyzed by GTPase activating proteins (GAPs). A third class of proteins, the guanine dissociation inhibitors (GDIs), binds the GDP-bound form of Gα subunits and inhibits nucleotide exchange. I found that GPR-1/2 acts as a GDI for GOA-1. Taken together, my findings suggest a model in which differential activation of Gα subunits along the AP axis may translate into generation of differential pulling forces on the anterior and posterior spindle poles, and, thus, asymmetric cell division. Résumé L'embryon du nématode Caenorhabditis elegans est un modèle approprié pour étudier les mécanismes de la division asymétrique. Chez l'embryon précoce, le fuseau mitotique se forme le long de l'axe antéro-postérieur (A/P) et au centre de l'embryon, le pôle antérieur restant relativement immobile alors que le pôle postérieur du fuseau se déplace vers le cortex postérieur au cours de l'anaphase conduisant à une position excentrée du fuseau. 11 en résulte une première division qui génère un blastomère antérieur et postérieur de grande et petite taille respectivement et qui diffèrent en facteurs développementaux. Ce déplacement postérieur se produit en réponse de la polarité établie par la distribution polarisée des protéines PAR et est le résultat de la génération de forces inégales tirant sur les deux pôles du fuseau, les forces agissant sur le pôle postérieur du fuseau étant plus grandes. Le projet de ma thèse était d'identifier la fonction de deux nouveaux constituants, gpr-1 et gpr-2 dans le positionnement asymétrique du fuseau. Ces gènes codent essentiellement pour la même protéine qui contient un motif GoLoco, caractéristique des protéines interagissant avec la sous-unité alpha des protéines G hétérotrimériques. Chez l'embryon gpr-1/2(RNAi) et chez les embryons dépourvus d'activité de deux sous-unités alpha, goa-1 et gpa-16, (Gα(RNAi)), j'ai montré qu'il y avait un déplacement minimal du fuseau vers le pôle postérieur au cours de l'anaphase et la première division est symétrique en raison de forces faibles et égales agissant sur les deux pôles du fuseau. J'ai également montré que gpr-1/2 était requis en aval des signaux établissant la polarité pour générer les forces responsables du positionnement asymétrique du fuseau. De plus, j'ai montré que GPR-1/2 était enrichi au pôle postérieur lors de la métaphase alors que GOA-1 et GPA-16 étaient localisés de façon uniforme au cortex de l'embryon précoce. Gas oscillent entre une forme liée au GDP et une forme liée au GTP. La signalisation des Gas est activée par l'échange GDP/GTP qui est catalysé par des protéines GEFs. La signalisation des Gas est désactivée par l'hydrolyse du GTP qui est catalysée par des protéines GAPs. Une troisième classe de protéines, GDIs lie la forme GDP et inhibe l'échange de nucléotides. J'ai montré que GPR-1/2 agissait comme un GDI pour GOA-1. Mes résultats suggèrent un modèle dans lequel une activation différentielle des Gα le long de l'axe A/P pourrait générer des forces différentielles sur le pôle antérieur et postérieur du fuseau.
Resumo:
OBJECTIVE: To examine the association of socioeconomic status (SES) with subjective and objective sleep disturbances and the role of socio-demographic, behavioural and psychological factors in explaining this association. METHODS: Analyses are based on 3391 participants (53% female, aged 40-81 years) of the follow-up of the CoLaus study (2009-2012), a population-based sample of the city of Lausanne, Switzerland. All participants completed a sleep questionnaire and a sub-sample (N = 1569) underwent polysomnography. RESULTS: Compared with men with a high SES, men with a low SES were more likely to suffer from poor sleep quality [prevalence ratio (PR) for occupational position = 1.68, 95% Confidence Interval (CI): 1.30-2.17], and to have long sleep latency (PR = 4.90, 95%CI: 2.14-11.17), insomnia (PR = 1.47, 95% CI: 1.12-1.93) and short sleep duration (PR = 3.03, 95% CI: 1.78-5.18). The same pattern was observed among women (PR = 1.29 for sleep quality, 2.34 for sleep latency, 2.01 for daytime sleepiness, 3.16 for sleep duration, 95%CIs ranging from 1.00 to 7.51). Use of sleep medications was not patterned by SES. SES differences in sleep disturbances were only marginally attenuated by adjustment for other socio-demographic, behavioural and psychological factors. Results from polysomnography confirmed poorer sleep patterns among participants with low SES (p <0.05 for sleep efficiency/stage shifts), but no SES differences were found for sleep duration. CONCLUSIONS: In this population-based sample, low SES was strongly associated with sleep disturbances, independently of socio-demographic, behavioural, and psychological factors. Further research should establish the extent to which social differences in sleep contribute to socioeconomic differences in health outcomes.
Resumo:
STUDY OBJECTIVES: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. DESIGN: N/A. SETTING: Animal sleep research laboratory. PARTICIPANTS: Sixty-six C57BL6/J adult mice. INTERVENTIONS: Instrumental sleep disruption at a rate of 60/h during 14 days. MEASUREMENTS AND RESULTS: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. CONCLUSIONS: Chronic SF increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.
Resumo:
Background: Previous studies have presented contradictory data concerning obstructive sleep apnoea syndrome (OSAS), lipid oxidation and nitric oxide (NO) bioavailability. This study was undertaken to (1) compare the concentration of 8-isoprostane and total nitrate and nitrite (NOx) in plasma of middle-aged men with OSAS and no other known co-morbidity and healthy controls of the same age, gender and body mass index; and (2) test the hypothesis that nasal continuous positive airway pressure (CPAP) therapy attenuates oxidative stress and nitrate deficiency. Methods: A prospective, randomised, placebo controlled, double-blind, crossover study was performed in 31 consecutive middle-aged men with newly diagnosed OSAS and 15 healthy control subjects. Patients with OSAS were randomised to receive sham CPAP or effective CPAP for 12 weeks. Blood pressure, urinary catecholamine levels and plasma 8-isoprostane and NOx concentrations were obtained before and after both treatment modalities. Results: Patients with OSAS had significantly higher 8-isoprostane levels (median (IQR) 42.5 (29.2-78.2) vs 20.0 (12.5-52.5) pg/ml, p = 0.041, Mann-Whitney test) and lower NOx levels (264 (165-650) vs 590 (251- 1465) mmol/l, p = 0.022) than healthy subjects. Body mass index, blood pressure and urinary catecholamines were unchanged by CPAP therapy, but 8-isoprostane concentrations decreased (38.5 (24.2-58.7) pg/ml at baseline vs 22.5 (16.2-35.3) pg/ml on CPAP, p = 0.0001) and NOx levels increased (280 (177-707) vs 1373 (981-1517) mmol/l, p = 0.0001) after CPAP. Conclusions: OSAS is associated with an increase in oxidative stress and a decrease in NOx that is normalised
Resumo:
BACKGROUND AND OBJECTIVES: Obstructive sleep apnea is associated with significantly increased cardiovascular morbidity and mortality. Fluid overload may promote obstructive sleep apnea in patients with ESRD through an overnight fluid shift from the legs to the neck soft tissues. Body fluid shift and severity of obstructive sleep apnea before and after hemodialysis were compared in patients with ESRD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Seventeen patients with hemodialysis and moderate to severe obstructive sleep apnea were included. Polysomnographies were performed the night before and after hemodialysis to assess obstructive sleep apnea, and bioimpedance was used to measure fluid overload and leg fluid volume. RESULTS: The mean overnight rostral fluid shift was 1.27±0.41 L prehemodialysis; it correlated positively with fluid overload volume (r=0.39; P=0.02) and was significantly lower posthemodialysis (0.78±0.38 L; P<0.001). There was no significant difference in the mean obstructive apnea-hypopnea index before and after hemodialysis (46.8±22.0 versus 42.1±18.6 per hour; P=0.21), but obstructive apnea-hypopnea index was significantly lower posthemodialysis (-10.1±10.8 per hour) in the group of 12 patients, with a concomitant reduction of fluid overload compared with participants without change in fluid overload (obstructive apnea-hypopnea index +8.2±16.1 per hour; P<0.01). A lower fluid overload after hemodialysis was significantly correlated (r=0.49; P=0.04) with a lower obstructive apnea-hypopnea index. Fluid overload-assessed by bioimpedance-was the best predictor of the change in obstructive apnea-hypopnea index observed after hemodialysis (standardized r=-0.68; P=0.01) in multivariate regression analysis. CONCLUSIONS: Fluid overload influences overnight rostral fluid shift and obstructive sleep apnea severity in patients with ESRD undergoing intermittent hemodialysis. Although no benefit of hemodialysis on obstructive sleep apnea severity was observed in the whole group, the change in obstructive apnea-hypopnea index was significantly correlated with the change in fluid overload after hemodialysis. Moreover, the subgroup with lower fluid overload posthemodialysis showed a significantly lower obstructive sleep apnea severity, which provides a strong incentive to further study whether optimizing fluid status in patients with obstructive sleep apnea and ESRD will improve the obstructive apnea-hypopnea index.
Resumo:
NlmCategory="UNASSIGNED">Sleep and sleep disorders are complex and highly variable phenotypes regulated by many genes and environment. The catechol-O-methyltransferase (COMT) gene is an interesting candidate, being one of the major mammalian enzymes involved in the catabolism of catecholamines. The activity of COMT enzyme is genetically polymorphic due to a guanine-to-adenine transition at codon 158, resulting in a valine (Val) to methionine (Met) substitution. Individuals homozygous for the Val allele show higher COMT activity, and lower dopaminergic signaling in prefrontal cortex (PFC) than subjects homozygous for the Met allele. Since COMT has a crucial role in metabolising dopamine, it was suggested that the common functional polymorphism in the COMT gene impacts on cognitive function related to PFC, sleep-wake regulation, and potentially on sleep pathologies. The COMT Val158Met polymorphism may predict inter-individual differences in brain electroencephalography (EEG) alpha oscillations and recovery processes resulting from partial sleep loss in healthy individuals. The Val158Met polymorphism also exerts a sexual dimorphism and has a strong effect on objective daytime sleepiness in patients with narcolepsy-cataplexy. Since the COMT enzyme inactivates catecholamines, it was hypothesized that the response to stimulant drugs differs between COMT genotypes. Modafinil maintained executive functioning performance and vigilant attention throughout sleep deprivation in subjects with Val/Val genotype, but less in those with Met/Met genotype. Also, homozygous Met/Met patients with narcolepsy responded to lower doses of modafinil compared to Val/Val carriers. We review here the critical role of the common functional COMT gene polymorphism, COMT enzyme activity, and the prefrontal dopamine levels in the regulation of sleep and wakefulness in normal subjects, in narcolepsy and other sleep-related disorders, and its impact on the response to psychostimulants.
Resumo:
Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.
Resumo:
Background. Previous observations found a high prevalence of obstructive sleep apnea (OSA) in the hemodialysis population, but the best diagnostic approach remains undefined. We assessed OSA prevalence and performance of available screening tools to propose a specific diagnostic algorithm. Methods. 104 patients from 6 Swiss hemodialysis centers underwent polygraphy and completed 3 OSA screening scores: STOP-BANG, Berlin's Questionnaire, and Adjusted Neck Circumference. The OSA predictors were identified on a derivation population and used to develop the diagnostic algorithm, which was validated on an independent population. Results. We found 56% OSA prevalence (AHI ≥ 15/h), which was largely underdiagnosed. Screening scores showed poor performance for OSA screening (ROC areas 0.538 [SE 0.093] to 0.655 [SE 0.083]). Age, neck circumference, and time on renal replacement therapy were the best predictors of OSA and were used to develop a screening algorithm, with higher discriminatory performance than classical screening tools (ROC area 0.831 [0.066]). Conclusions. Our study confirms the high OSA prevalence and highlights the low diagnosis rate of this treatable cardiovascular risk factor in the hemodialysis population. Considering the poor performance of OSA screening tools, we propose and validate a specific algorithm to identify hemodialysis patients at risk for OSA for whom further sleep investigations should be considered.
Resumo:
OBJECTIVE: Although sleep is a biomarker for general health and pathological conditions, its changes across age and gender are poorly understood. METHODS: Subjective evaluation of sleep was assessed by questionnaires in 5,064 subjects, and 2,966 were considered without sleep disorders. Objective evaluation was performed by polysomnography in 2,160 subjects, and 1,147 were considered without sleep disorders. Only subjects without sleep disorders were included (aged 40-80 years). RESULTS: Aging was strongly associated with morning preference. Older subjects, especially women, complained less about sleepiness, and pathological sleepiness was significantly lower than in younger subjects. Self-reported sleep quality and daytime functioning improved with aging. Sleep latency increased with age in women, while sleep efficiency decreased with age in both genders. Deep slow-wave sleep decreased with age, but men were more affected. Spectral power densities within slow waves (< 5 Hz) and fast spindles (14-14.75 Hz) decreased, while theta-alpha (5-1 Hz) and beta (16.75-25 Hz) power in non-rapid eye movement sleep increased with aging. In REM sleep, aging was associated with a progressive decrease in delta (1.25-4.5 Hz) and increase in higher frequencies. CONCLUSIONS: Our findings indicate that sleep complaints should not be viewed as part of normal aging but should prompt the identification of underlying causes.
Resumo:
INTRODUCTION: The aim of this study was to evaluate if there is a significant effect of lunar phases on subjective and objective sleep variables in the general population. METHODS: A total of 2125 individuals (51.2% women, age 58.8 ± 11.2 years) participating in a population-based cohort study underwent a complete polysomnography (PSG) at home. Subjective sleep quality was evaluated by a self-rating scale. Sleep electroencephalography (EEG) spectral analysis was performed in 759 participants without significant sleep disorders. Salivary cortisol levels were assessed at awakening, 30 min after awakening, at 11 am, and at 8 pm. Lunar phases were grouped into full moon (FM), waxing/waning moon (WM), and new moon (NM). RESULTS: Overall, there was no significant difference between lunar phases with regard to subjective sleep quality. We found only a nonsignificant (p = 0.08) trend toward a better sleep quality during the NM phase. Objective sleep duration was not different between phases (FM: 398 ± 3 min, WM: 402 ± 3 min, NM: 403 ± 3 min; p = 0.31). No difference was found with regard to other PSG-derived parameters, EEG spectral analysis, or in diurnal cortisol levels. When considering only subjects with apnea/hypopnea index of <15/h and periodic leg movements index of <15/h, we found a trend toward shorter total sleep time during FM (FM: 402 ± 4, WM: 407 ± 4, NM: 415 ± 4 min; p = 0.06) and shorter-stage N2 duration (FM: 178 ± 3, WM: 182 ± 3, NM: 188 ± 3 min; p = 0.05). CONCLUSION: Our large population-based study provides no evidence of a significant effect of lunar phases on human sleep.