976 resultados para Single frequency
Resumo:
The Italian radio telescopes currently undergo a major upgrade period in response to the growing demand for deep radio observations, such as surveys on large sky areas or observations of vast samples of compact radio sources. The optimised employment of the Italian antennas, at first constructed mainly for VLBI activities and provided with a control system (FS – Field System) not tailored to single-dish observations, required important modifications in particular of the guiding software and data acquisition system. The production of a completely new control system called ESCS (Enhanced Single-dish Control System) for the Medicina dish started in 2007, in synergy with the software development for the forthcoming Sardinia Radio Telescope (SRT). The aim is to produce a system optimised for single-dish observations in continuum, spectrometry and polarimetry. ESCS is also planned to be installed at the Noto site. A substantial part of this thesis work consisted in designing and developing subsystems within ESCS, in order to provide this software with tools to carry out large maps, spanning from the implementation of On-The-Fly fast scans (following both conventional and innovative observing strategies) to the production of single-dish standard output files and the realisation of tools for the quick-look of the acquired data. The test period coincided with the commissioning phase for two devices temporarily installed – while waiting for the SRT to be completed – on the Medicina antenna: a 18-26 GHz 7-feed receiver and the 14-channel analogue backend developed for its use. It is worth stressing that it is the only K-band multi-feed receiver at present available worldwide. The commissioning of the overall hardware/software system constituted a considerable section of the thesis work. Tests were led in order to verify the system stability and its capabilities, down to sensitivity levels which had never been reached in Medicina using the previous observing techniques and hardware devices. The aim was also to assess the scientific potential of the multi-feed receiver for the production of wide maps, exploiting its temporary availability on a mid-sized antenna. Dishes like the 32-m antennas at Medicina and Noto, in fact, offer the best conditions for large-area surveys, especially at high frequencies, as they provide a suited compromise between sufficiently large beam sizes to cover quickly large areas of the sky (typical of small-sized telescopes) and sensitivity (typical of large-sized telescopes). The KNoWS (K-band Northern Wide Survey) project is aimed at the realisation of a full-northern-sky survey at 21 GHz; its pilot observations, performed using the new ESCS tools and a peculiar observing strategy, constituted an ideal test-bed for ESCS itself and for the multi-feed/backend system. The KNoWS group, which I am part of, supported the commissioning activities also providing map-making and source-extraction tools, in order to complete the necessary data reduction pipeline and assess the general system scientific capabilities. The K-band observations, which were carried out in several sessions along the December 2008-March 2010 period, were accompanied by the realisation of a 5 GHz test survey during the summertime, which is not suitable for high-frequency observations. This activity was conceived in order to check the new analogue backend separately from the multi-feed receiver, and to simultaneously produce original scientific data (the 6-cm Medicina Survey, 6MS, a polar cap survey to complete PMN-GB6 and provide an all-sky coverage at 5 GHz).
13C NMR of a single molecule magnet: analysis of pseudocontact shifts and residual dipolar couplings
Resumo:
Paramagnetic triple decker complexes of lanthanides are promising Single Molecule Magnets (SMMs), with many potential uses. Some of them show preferable relaxation behavior, which enables the recording of well resolved NMR spectra. These axially symmetric complexes are also strongly magnetically anisotropic, and this property can be described with the axial component of the magnetic susceptibility tensor, χa. For triple decker complexes with phthalocyanine based ligands, the Fermi˗contact contribution is small. Hence, together with the axial symmetry, the experimental chemical shifts in 1H and 13C NMR spectra can be modeled easily by considering pseudocontact and orbital shifts alone. This results in the determination of the χa value, which is also responsible for molecular alignment and consequently for the observation of residual dipolar couplings (RDCs). A detailed analysis of the experimental 1H-13C and 1H-1H couplings revealed that contributions from RDCs (positive and negative) and from dynamic frequency shifts (negative for all observed couplings) have to be considered. Whilst the pseudocontact shifts depend on the average positions of 1H and 13C nuclei relative to the lanthanide ions, the RDCs are related to the mobility of nuclei they correspond to. This phenomenon allows for the measurement of the internal mobility of the various groups in the SMMs.
Resumo:
In der vorgelegten Doktorarbeit werden Experimente vorgestellt, die an einem einzelnen Proton in einer Penningfalle durchgeführt worden sind. Die Eigenbewegung eines isoliert gespeicherten, freien Protons konnte elektronisch durch Kopplung an einen Resonanzschwingkreis nachgewiesen werden. Dies stellt eine nicht-destruktive Messung dar, d. h. das Teilchen geht während der Messung nicht verloren. Die freie Zyklotronfrequenz, die aus den drei gemessenen Eigenfrequenzen hervorgeht, ist eine von zwei zur Bestimmung des magnetischen Moments notwendigen Frequenzen. So wird im Gegensatz zu den existierenden Arbeiten eine direkte Bestimmung des g-Faktors ermöglicht. Planung, Entwicklung und Inbetriebnahme des experimentellen Aufbaus wurden im Rahmen dieser Arbeit durchgeführt, womit eine Messgenauigkeit von 10-7 erreicht wurde. Die dabei zu bewältigenden technischen Herausforderungen zur Bestimmung der zweiten Frequenz (der Larmorfrequenz) ergeben sich aus der Kleinheit des magnetischen Moments. Bei dem für diese Messung benötigten Spinzustand des Teilchens handelt es sich um einen internen Freiheitsgrad, der nur über eine Kopplung des magnetischen Moments an die Eigenbewegung bestimmt werden kann. Eine neuartige, hybride Penningfalle wird in dieser Arbeit vorgestellt, die als Quantensprung-Spektrometer die Spininformation auf die Eigenbewegung abbildet. Damit liegt der aus der magnetischen Kopplung resultierende Frequenzunterschied in den beiden Spinzuständen erstmalig in einem elektronisch detektierbaren Bereich.
Resumo:
This dissertation presents the theory and the conducted activity that lead to the construction of a high voltage high frequency arbitrary waveform voltage generator. The generator has been specifically designed to supply power to a wide range of plasma actuators. The system has been completely designed, manufactured and tested at the Department of Electrical, Electronic and Information Engineering of the University of Bologna. The generator structure is based on the single phase cascaded H-bridge multilevel topology and is comprised of 24 elementary units that are series connected in order to form the typical staircase output voltage waveform of a multilevel converter. The total number of voltage levels that can be produced by the generator is 49. Each level is 600 V making the output peak-to-peak voltage equal to 28.8 kV. The large number of levels provides high resolution with respect to the output voltage having thus the possibility to generate arbitrary waveforms. Maximum frequency of operation is 20 kHz. A study of the relevant literature shows that this is the first time that a cascaded multilevel converter of such dimensions has been constructed. Isolation and control challenges had to be solved for the realization of the system. The biggest problem of the current technology in power supplies for plasma actuators is load matching. Resonant converters are the most used power supplies and are seriously affected by this problem. The manufactured generator completely solves this issue providing consistent voltage output independently of the connected load. This fact is very important when executing tests and during the comparison of the results because all measures should be comparable and not dependent from matching issues. The use of the multilevel converter for power supplying a plasma actuator is a real technological breakthrough that has provided and will continue to provide very significant experimental results.
Resumo:
Das in dieser Arbeit vorgestellte Experiment zur Messung des magnetischen Moments des Protons basiert auf der Messung des Verhältnisses von Zyklotronfrequenz und Larmorfrequenz eines einzelnen, in einer kryogenen Doppel-Penning Falle gespeicherten Protons. In dieser Arbeit konnten erstmalig zwei der drei Bewegungsfrequenzen des Protons gleichzeitig im thermischen Gleichgewicht mit entsprechenden hochsensitiven Nachweissystemen nicht-destruktiv detektiert werden, wodurch die Messzeit zur Bestimmung der Zyklotronfrequenz halbiert werden konnte. Ferner wurden im Rahmen dieser Arbeit erstmalig einzelne Spin-Übergänge eines einzelnen Protons detektiert, wodurch die Bestimmung der Larmorfrequenz ermöglicht wird. Mithilfe des kontinuierlichen Stern-Gerlach Effekts wird durch eine sogenannte magnetische Flasche das magnetische Moment an die axiale Bewegungsmode des Protons gekoppelt. Eine Änderung des Spinzustands verursacht folglich einen Frequenzsprung der axialen Bewegungsfrequenz, welche nicht-destruktiv gemessen werden kann. Erschwert wird die Detektion des Spinzustands dadurch, dass die axiale Frequenz nicht nur vom Spinmoment, sondern auch vom Bahnmoment abhängt. Die große experimentelle Herausforderung besteht also in der Verhinderung von Energieschwankungen in den radialen Bewegungsmoden, um die Detektierbarkeit von Spin-Übergängen zu gewährleisten. Durch systematische Studien zur Stabilität der axialen Frequenz sowie einer kompletten Überarbeitung des experimentellen Aufbaus, konnte dieses Ziel erreicht werden. Erstmalig kann der Spinzustand eines einzelnen Protons mit hoher Zuverlässigkeit bestimmt werden. Somit stellt diese Arbeit einen entscheidenden Schritt auf dem Weg zu einer hochpräzisen Messung des magnetischen Moments des Protons dar.
Resumo:
Background Although CD4 cell count monitoring is used to decide when to start antiretroviral therapy in patients with HIV-1 infection, there are no evidence-based recommendations regarding its optimal frequency. It is common practice to monitor every 3 to 6 months, often coupled with viral load monitoring. We developed rules to guide frequency of CD4 cell count monitoring in HIV infection before starting antiretroviral therapy, which we validated retrospectively in patients from the Swiss HIV Cohort Study. Methodology/Principal Findings We built up two prediction rules (“Snap-shot rule” for a single sample and “Track-shot rule” for multiple determinations) based on a systematic review of published longitudinal analyses of CD4 cell count trajectories. We applied the rules in 2608 untreated patients to classify their 18 061 CD4 counts as either justifiable or superfluous, according to their prior ≥5% or <5% chance of meeting predetermined thresholds for starting treatment. The percentage of measurements that both rules falsely deemed superfluous never exceeded 5%. Superfluous CD4 determinations represented 4%, 11%, and 39% of all actual determinations for treatment thresholds of 500, 350, and 200×106/L, respectively. The Track-shot rule was only marginally superior to the Snap-shot rule. Both rules lose usefulness for CD4 counts coming near to treatment threshold. Conclusions/Significance Frequent CD4 count monitoring of patients with CD4 counts well above the threshold for initiating therapy is unlikely to identify patients who require therapy. It appears sufficient to measure CD4 cell count 1 year after a count >650 for a threshold of 200, >900 for 350, or >1150 for 500×106/L, respectively. When CD4 counts fall below these limits, increased monitoring frequency becomes advisable. These rules offer guidance for efficient CD4 monitoring, particularly in resource-limited settings.
Resumo:
A 27-year-old patient with traumatic brain injury and neuropsychiatric symptoms fitting the obsessive-compulsive disorder was investigated. Brain CT-scan revealed left temporal and bilateral fronto-basal parenchymal contusions. Main Outcome Measure was the Yale-Brown Obsessive Compulsive Scale at pre- and post-treatment and at 6 months follow-up. The combination of pharmacotherapy and psychotherapy resulted in lower intensity and frequency of symptoms. Our case illustrates the importance of a detailed diagnostic procedure in order to provide appropriate therapeutic interventions. Further studies are needed to guide the clinician in determining which patients are likely to benefit from a psychotherapeutic intervention in combination with pharmacotherapy.
Resumo:
BACKGROUND: The Baxter Amicus Version 2.51 (A) and the Gambro BCT Trima Accel Version 5.0 (T) cell separators may produce multiple platelet (PLT) concentrates within a single donation. STUDY DESIGN AND METHODS: The single-needle multiple plateletpheresis procedures of the two devices were compared in a prospective, randomized, paired crossover study in 60 donors. The 120 donations were compared for donor comfort, collection efficiency, residual white blood cell (WBC) count, and (in selected patients) corrected count increment (CCI). RESULTS: The mean PLT yield and the resultant mean number of units per donation were significantly lower for A (6.06 x 10(11) vs. 7.48 x 10(11) and 2.57 vs. 3.19, respectively, both p < 0.001), in spite of a longer apheresis duration (89 min vs. 79 min; p < 0.001). This resulted in a higher collection rate of T (5.68 x 10(11) PLTs/hr vs. 4.10 x 10(11) PLTs/hr, p < 0.001). Residual WBC count of every unit was fewer than 5 x 10(6), but significantly fewer A-PLT donations contained more than 10(5) WBCs per unit (1 vs. 9, p = 0.008). Although the ACD-A consumption was slightly higher for A (489 mL vs. 469 mL, p = 0.04), a trend to a higher frequency of side effects was found for T (42.4% vs. 23.7%, p = 0.06). The 1-hour CCIs of 33 transfused A-PLT units were comparable with those of 43 T-PLT units (11.8 vs. 13.9, p = 0.480). CONCLUSIONS: Both cell separators showed safe collections of up to 4 PLT units per donation with adequate CCI. T produced a higher PLT yield despite shorter apheresis duration, but with slightly higher residual WBC counts and a trend to a higher side-effect frequency.
Resumo:
RATIONALE: Olanzapine is an atypical antipsychotic drug with a more favourable safety profile than typical antipsychotics with a hitherto unknown topographic quantitative electroencephalogram (QEEG) profile. OBJECTIVES: We investigated electrical brain activity (QEEG and cognitive event related potentials, ERPs) in healthy subjects who received olanzapine. METHODS: Vigilance-controlled, 19-channel EEG and ERP in an auditory odd-ball paradigm were recorded before and 3 h, 6 h and 9 h after administration of either a single dose of placebo or olanzapine (2.5 mg and 5 mg) in ten healthy subjects. QEEG was analysed by spectral analysis and evaluated in nine frequency bands. For the P300 component in the odd-ball ERP, the amplitude and latency was analysed. Statistical effects were tested using a repeated-measurement analysis of variance. RESULTS: For the interaction between time and treatment, significant effects were observed for theta, alpha-2, beta-2 and beta-4 frequency bands. The amplitude of the activity in the theta band increased most significantly 6 h after the 5-mg administration of olanzapine. A pronounced decrease of the alpha-2 activity especially 9 h after 5 mg olanzapine administration could be observed. In most beta frequency bands, and most significantly in the beta-4 band, a dose-dependent decrease of the activity beginning 6 h after drug administration was demonstrated. Topographic effects could be observed for the beta-2 band (occipital decrease) and a tendency for the alpha-2 band (frontal increase and occipital decrease), both indicating a frontal shift of brain electrical activity. There were no significant changes in P300 amplitude or latency after drug administration. Conclusion: QEEG alterations after olanzapine administration were similar to EEG effects gained by other atypical antipsychotic drugs, such as clozapine. The increase of theta activity is comparable to the frequency distribution observed for thymoleptics or antipsychotics for which treatment-emergent somnolence is commonly observed, whereas the decrease of beta activity observed after olanzapine administration is not characteristic for these drugs. There were no clear signs for an increased cerebral excitability after a single-dose administration of 2.5 mg and 5 mg olanzapine in healthy controls.
Resumo:
PURPOSE: Two noninvasive methods to measure dental implant stability are damping capacity assessment (Periotest) and resonance frequency analysis (Osstell). The objective of the present study was to assess the correlation of these 2 techniques in clinical use. MATERIALS AND METHODS: Implant stability of 213 clinically stable loaded and unloaded 1-stage implants in 65 patients was measured in triplicate by means of resonance frequency analysis and Periotest. Descriptive statistics as well as Pearson's, Spearman's, and intraclass correlation coefficients were calculated with SPSS 11.0.2. RESULTS: The mean values were 57.66 +/- 8.19 implant stability quotient for the resonance frequency analysis and -5.08 +/- 2.02 for the Periotest. The correlation of both measuring techniques was -0.64 (Pearson) and -0.65 (Spearman). The single-measure intraclass correlation coefficients for the ISQ and Periotest values were 0.99 and 0.88, respectively (95% CI). No significant correlation of implant length with either resonance frequency analysis or Periotest could be found. However, a significant correlation of implant diameter with both techniques was found (P < .005). The correlation of both measuring systems is moderate to good. It seems that the Periotest is more susceptible to clinical measurement variables than the Osstell device. The intraclass correlation indicated lower measurement precision for the Periotest technique. Additionally, the Periotest values differed more from the normal (Gaussian) curve of distribution than the ISQs. Both measurement techniques show a significant correlation to the implant diameter. CONCLUSION: Resonance frequency analysis appeared to be the more precise technique.
Resumo:
Few data exist on the incidence of spontaneously occurring ventricular tachycardia (VT) in an unselected pediatric population. The aim of this study was to define the incidence and outcomes of VT in a general pediatric population. A retrospective analysis was performed of all documented episodes of VT in children referred to a single center during a 10-year study period ending in December 2005. The study center drains a stable referral area with 252,000 children aged <16 years, with no other pediatric cardiologic or pediatric intensive care services available. Twenty-seven patients with spontaneously occurring episodes of VT were observed, accounting for a VT incidence of 1.1 episodes/100,000 childhood years. Thirteen patients had VT in the absence of structural heart disease, and 14 had VT in the presence of a wide range of underlying cardiac disease. Overall mortality was 5 of 27 patients (19%), but mortality was seen exclusively in patients with underlying heart disease; for this subgroup of patients, mortality was 36%. Idiopathic VT in children with structurally normal hearts carried a good prognosis, and treatment was required in a minority (20%) of these patients. In conclusion, this study highlights that VT in childhood is rare, and outcomes are highly dependent on the underlying pathologic substrate.
Resumo:
OBJECTIVE: To compare the risk of shunt-dependent hydrocephalus after treatment of ruptured intracranial aneurysms by clipping versus coiling. METHODS: We analyzed 596 patients prospectively added to our database from July of 1999 to November of 2005 concerning the risk of shunt dependency after clipping versus coiling. Factors analyzed included age; sex; Hunt and Hess grade; Fisher grade; acute hydrocephalus; intraventricular hemorrhage; angiographic vasospasm; and number, size, and location of aneurysms. In addition, a meta-analysis of available data from the literature was performed identifying four studies with quantitative data on the frequency of clip, coil, and shunt dependency. RESULTS: The institutional series revealed Hunt and Hess grade, Fisher grade, acute hydrocephalus, intraventricular hemorrhage, and angiographic vasospasm as significant (P < 0.05) risk factors for shunt dependency after a univariate analysis. In a multivariate logistic regression analysis, we isolated intraventricular hemorrhage, acute hydrocephalus, and angiographic vasospasm as independent, significant risk factors for shunt dependency. The meta-analysis, including the current data, revealed a significantly higher risk for shunt dependency after coiling than after clipping (P = 0.01). CONCLUSION: Clipping of a ruptured aneurysm may be associated with a lower risk for developing shunt dependency, possibly by clot removal. This might influence long-term outcome and surgical decision making.
Resumo:
OBJECTIVE: To evaluate the effects of a single preoperative dose of steroid on thyroidectomy outcomes. BACKGROUND: Nausea, pain, and voice alteration frequently occur after thyroidectomy. Because steroids effectively reduce nausea and inflammation, a preoperative administration of steroids could improve these thyroidectomy outcomes. METHODS: Seventy-two patients (men = 20, women = 52) undergoing thyroidectomy for benign disease were included in this randomized, controlled, 2 armed (group D: 8 mg dexamethasone, n = 37; group C: 0.9% NaCl, n = 35), double-blinded study (clinical trial number NCT00619086). Anesthesia, surgical procedures, antiemetics, and analgesic treatments were standardized. Nausea (0-3), pain (visual analog scale), antiemetic and analgesic requirements, and digital voice recording were documented before and 4, 8, 16, 24, 36, and 48 hours after surgery. Patients were followed-up 30 days after hospital discharge. RESULTS: Baseline characteristics were similar among the 2 treatment groups. Nausea was pronounced in the first 16 hours postoperatively (scores were <0.3 and 0.8-1.0 for group D and C, respectively (P = 0.005)), and was significantly lower in group D compared with group C during the observation period (P = 0.001). Pain diminished within 48 hours after surgery (visual analog scale 20 and 35 in group D and C, respectively (P = 0.009)). Antiemetic and analgesic requirements were also significantly diminished. Changes in voice mean frequency were less prominent in the dexamethasone group compared with the placebo group (P = 0.015). No steroid-related complications occurred. CONCLUSION: A preoperative single dose of steroid significantly reduced nausea, vomiting, and pain, and improved postoperative voice function within the first 48 hours (most pronounced within 16 hours) after thyroid resection; this strategy should be routinely applied in thyroidectomies.
Resumo:
As awareness of potential human and environmental impacts from toxins has increased, so has the development of innovative sensors. Bacteriorhodopsin (bR) is a light activated proton pump contained in the purple membrane (PM) of the bacteria Halobacterium salinarum. Bacteriorhodopsin is a robust protein which can function in both wet and dry states and can withstand extreme environmental conditions. A single electron transistor(SET) is a nano-scale device that exploits the quantum mechanical properties of electrons to switch on and off. SETs have tremendous potential in practical applications due to their size, ultra low power requirements, and electrometer-like sensitivity. The main goal of this research was to create a bionanohybrid device by integrating bR with a SET device. This was achieved by a multidisciplinary approach. The SET devices were created by a combination of sputtering, photolithography, and focused ion beam machining. The bionanomaterial bacteriorhodopsin was created through oxidative fermentation and a series of transmembrane purification processes. The bR was then integrated with the SET by electrophoretic deposition, creating a bionanohybrid device. The bionanohybrid device was then characterized using a semiconductor parametric analyzer. Characterization demonstrated that the bR modulated the operational characteristics of the SET when bR was activated with light within its absorbance spectrum. To effectively integrate bacteriorhodopsin with microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), it is critical to know the electrical properties of the material and to understand how it will affect the functionality of the device. Tests were performed on dried films of bR to determine if there is a relationship between inductance, capacitance, and resistance (LCR) measurements and orientation, light-on/off, frequency, and time. The results indicated that the LCR measurements of the bR depended on the thickness and area of the film, but not on the orientation, as with other biological materials such as muscle. However, there was a transient LCR response for both oriented and unoriented bR which depended on light intensity. From the impedance measurements an empirical model was suggested for the bionanohybrid device. The empirical model is based on the dominant electrical characteristics of the bR which were the parallel capacitance and resistance. The empirical model suggests that it is possible to integrate bR with a SET without influencing its functional characteristics.
Resumo:
The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.