939 resultados para Single crystal spectra
Resumo:
This work reports on the synthesis of a copper(II) coordination compound with 4,4-oxibis(benzoate) (obb) and trans-1,2- bis(4-pyridyl)ethene (bpe) ligands. The complex was characterized by single-crystal X-ray diffraction, which showed a 3D polymeric structure. Each copper center is surrounded by four oxygen atoms at the basal plane and one nitrogen atom and one copper atom at the axial positions, revealing a distorted octahedral geometry. Four carboxylic groups bridge two copper atoms, forming a cage-like structure, with the distance between the metallic centers being 2.656(1)Å. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
The triphenylphosphine (PPh3) displaces the acetonitrile from [PdCl2(CH3CN)2], and subsequent addition of the potassium cyanate causes substitution of the chloro ligand by NCO- to yield trans-[Pd(NCO)2(PPh3)2]. The complex was characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 9.213(3)Å, b = 9.781(7)Å, c = 10.483(5)Å, α = 111.39(5)°, β = 93.49(3)°, γ = 103.81(4)°, V = 845.0(1)Å3, Z = 1. The coordination geometry around Pd(II) in this complex is nearly square-planar, with the ligands in a trans relationship. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
The dinuclear azido-palladium(II) complex [Pd2(N3)4(PPh3)2(μ-ted)], where PPh3 = triphenylphosphine and ted = triethylenediamine, was synthesized and characterized by single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 11.5875(2)Å, b = 13.0817(3)Å, c = 15.2618(3)Å, α = 93.306(2)°, β =110.040(1)°, γ = 98.486(1)°, V = 2134.95(8)Å3, Z = 2. Each Pd(II) center displays a distorted squareplanar coordination environment formed by two N atoms from two trans terminally coordinated azido groups, one P atom from the phosphine and one N atom from the bridging ted ligand. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
The cyclopalladated complex [Pd(C2,N-dmba)(μ-SCN)]2, where dmba = N,N-dimethylbenzylamine, was structurally characterized by single-crystal X-ray diffraction. This compound crystallizes in the monoclinic system, space group P21/n with a = 9.578(1)Å, b = 12.323(2)Å, c = 10.279(2)Å, β = 117.03(1)°, V = 1080.7(3)Å3, Z = 2. Each Pd(II) center displays a distorted square-planar coordination environment, formed by the C and N atoms from the dmba ligand, and one set of N and S atoms from the bridging SCN groups. 2009 © The Japan Society for Analytical Chemistry.
Resumo:
The Schiff base thiophenyl-2-methylidene-2-aminophenol (ImineOH) is obtained from a stoichiometric mixture of 2-thiophenecarboxaldehyde and 2-aminophenol in ethanol under reflux at 90 C. Its crystal structure is determined by single crystal X-ray diffraction. ImineOH packs in an orthorhombic unit cell in the Pbca space group with the unit cell parameters a = 16.942(4) Å, b = 13.4395(11) Å, and c = 17.5857(12) Å, V = 4004.1(10) Å3, Z = 16. Strong hydrogen bonds are present in the ImineOH structure. Apart from the X-ray study, ImineOH was characterized by elemental analysis (CHN-S) and FT-IR (4000 cm-1 to 400 cm-1), UV-Vis and 13C, 1H, and 15N NMR spectroscopic measurements. © 2013 Pleiades Publishing, Ltd.
Resumo:
The new europium binuclear complex [Eu2(dcpz) 2(suc)(H2O)8]·(H2O) 1.5 (dcpz = 3,5-dicarboxypyrazolate and suc = succinate) has been synthesized and structurally characterized by single crystal X-ray diffraction methods. The binuclear complex crystallizes in the triclinic space group P1̄ and consists of two lanthanide ions linked by two different bridging organic ligands. 3D supramolecular framework is constructed by hydrogen bonds. The compound shows strong red emission under UV excitation at room temperature associated to IL transitions indicating a ligand to metal energy transfer mechanism since the triplet energy level lies higher than that of europium 5D0 level. Magnetic susceptibility studies showed weak temperature dependence characteristic of the Van Vleck paramagnetism. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Plasmon-enhanced spectroscopic techniques have expanded single-molecule detection (SMD) and are revolutionizing areas such as bio-imaging and single-cell manipulation. Surface-enhanced (resonance) Raman scattering (SERS or SERRS) combines high sensitivity with molecularfingerprint information at the single-molecule level. Spectra originating from single-molecule SERS experiments are rare events, which occur only if a single molecule is located in a hot-spot zone. In this spot, the molecule is selectively exposed to a significant enhancement associated with a high, local electromagnetic field in the plasmonic substrate. Here, we report an SMD study with an electrostatic approach in which a Langmuir film of a phospholipid with anionic polar head groups (PO 4 -) was doped with cationic methylene blue (MB), creating a homogeneous, two-dimensional distribution of dyes in the monolayer. The number of dyes in the probed area of the Langmuir-Blodgett (LB) film coating the Ag nanostructures established a regime in which single-molecule events were observed, with the identification based on direct matching of the observed spectrum at each point of the mapping with a reference spectrum for the MB molecule. In addition, advanced fitting techniques were tested with the data obtained from micro-Raman mapping, thus achieving real-time processing to extract the MB single-molecule spectra. © 2013 Society for Applied Spectroscopy.
Resumo:
A YSZ@Al2O3 nanocomposite was obtained by Al 2O3 coating on the surface of yttrium stabilized zirconia via a polymeric precursor method. The resulting core-shell structures were characterized by X-ray diffraction, scanning electron microscopy, transmission electronic microscopy and PL spectra. The TEM micrographs clearly show a homogeneous Al2O3 shell around the ZrO2 core. The observed PL is related to surface-interface defects. Such novel technologies can, in principle, explore materials which are not available in the bulk single crystal form but their figure-of-merit is dramatically dependent on the surface-interface defect states. © 2013 This journal isThe Royal Society of Chemistry.
Resumo:
The novel coordination polymer with the formula {[Nd2(2,5-tdc)3(dmf)2(H2O)2].dmf.H2O}n (2,5-tdc2-=2,5-thiophedicarboxylate anion and dmf=dimethylformamide) has been synthesized and characterized by thermal analysis (TG/DTA), vibrational spectroscopy (FTIR) and single crystal X-ray diffraction analysis (XRD). Structure analysis reveals that Nd(III) ions show dicapped trigonal prism coordination geometry. The 2,5-tdc2- ligands connect four Nd(III) centers, adopting (κ1 - κ1) - (κ1 - κ1) - μ4 coordination mode, generating an interesting 6-connected uninodal 3D network. Photophysical properties were studied using diffuse reflectance spectroscopy (DR) and excitation/emission spectra. The photoluminescence data show the near infrared emission (NIR) with the characteristic 4F3/2→4IJ (J=9/2, 11/2 and 13/2) transitions of Nd(III) ion, indicating that 2,5-tdc2- is able to act as a sensitizer for emission in NIR region. © 2013 Elsevier B.V.
Resumo:
A polymeric complex [Eu(α-tpc)3(α-Htpc) 2]n and its characterization by single crystal X-ray and thermal analysis, infrared and photoluminescence spectroscopies are described. The compound crystallizes in the monoclinic Cc space group. The asymmetric unit is formed from a europium ion bonded to one carboxyl oxygen of five different thiophene carboxylic moieties. Three of these moieties are deprotonated and bridge between neighboring europium ions giving rise to an infinite polymer along the c axis. Besides the europium characteristic emission lines, the emission spectra show unambiguously the crystal size effect on the 5D0 → 7F0 transition. The complex thermal decomposition at 220 C leads to a stable luminescent complex in which the 5D0 → 7F4 transition reveals a monomeric characteristic. The Judd-Ofelt intensity parameters to the polymeric and the monomeric compound with the same ligand and coordination number were compared. © 2013 Published by Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The CaSnO3 perovskite is investigated under geochemical pressure, up to 25 GPa, by means of periodic ab initio calculations performed at B3LYP level with local Gaussian-type orbital basis sets. Structural, elastic, and spectroscopic (phonon wave-numbers, infrared and Raman intensities) properties are fully characterized and discussed. The evolution of the Raman spectrum of CaSnO3 under pressure is reported to remarkably agree with a recent experimental determination [J. Kung, Y. J. Lin, and C. M. Lin, J. Chem. Phys. 135, 224507 (2011)] as regards both wave-number shifts and intensity changes. All phonon modes are symmetry-labeled and bands assigned. The single-crystal total spectrum is symmetry-decomposed into the six directional spectra related to the components of the polarizability tensor. The infrared spectrum at increasing pressure is reported for the first time and its main features discussed. All calculations are performed using the CRYSTAL14 program, taking advantage of the new implementation of analytical infrared and Raman intensities for crystalline materials. (C) 2015 AIP Publishing LLC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The title compound [Ni(C20H15N2OS)(2)] is prepared by the reaction of metal acetate with the corresponding acylthiourea derivative. The complex is characterized by elemental analysis, IR, H-1 and C-13 NMR, and its structure is determined by single crystal X-ray diffraction. The Ni(II) ion is coordinated by the S and O atoms of two N-benzoyl-N',N'-diphenylthiourea ligands in a slightly distorted square-planar coordination geometry. The two O and two S atoms are mutually cis to each other. The substance crystallizes triclinic (P-1 space group) with cell dimensions a = 10.7262(9) , b = 12.938(3) , c = 14.2085(12) , alpha = 74.650(4)A degrees, beta = 78.398(4)A degrees, gamma = 68.200(5)A degrees, and two formula units in the unit cell. The structure is very close to the related N-(2-furoyl) Ni complex reported previously.
Resumo:
The analysis of the infrared (IR) carbonyl band of some 3-(4'-substituted phenylsulfonyl)-1-methyl-2-piperidones 1-5 bearing as substituents: OMe 1, Me 2, H 3, Cl 4 and NO2 5, supported by B3LY13/6-31G(d,p) calculations along with NBO analysis (for 1, 3 and 5) and X-ray diffraction (for 5), indicated the existence of three stable conformations i.e. quasi-axial (q-ax), syn-clinal (s-cl) and quasi-equatorial (q-eq). In the gas phase, the q-ax conformer is calculated as the most stable (ca. 88%) and the least polar, the s-cl conformer is less stable (ca. 12%) but more polar, and the q-eq conformer is the least stable (ca. 1%) and the most polar of the three conformers evaluated. The sum of the most important orbital interactions from NBO analysis and the trend of the electrostatic interactions accounts for the relative populations as well as for the v(CO) frequencies of the q-ax. s-cl and q-eq conformers calculated in the gas phase. The unique IR v(CO) band in CCl4 may be ascribed to the most stable q-ax conformer. The more intense (60%) high frequency doublet component in CHCl3 may be assigned to the summing up of the least stable q-eq and the less stable s-cl conformers, as their frequencies are almost coincident. The occurrence of only a single v(CO) band in both CH2Cl2 and CH3CN supports the fact that the v(CO) band of the two more polar conformers appear as a single band. Additional support to this rationalization is given by the single point PCM method, which showed a progressive increase of the q-eq + s-cl/q-ax population ratio going from the gas phase to CCl4, to CHCl3, to CH2Cl2 and to CN3CN. X-ray single crystal analysis of 5 indicates that this compound displays a quasi-axial geometry with respect to the [O=C-CH-S] moiety, and that the 2-piperidone ring assumes a slightly distorted half-chair conformation. In the crystal packing, molecules of 5 are arranged into supramolecular layers linked through C-H center dot center dot center dot O interactions along with it pi center dot center dot center dot pi interactions between adjacent benzene rings. (C) 2012 Elsevier B.V. All rights reserved.