965 resultados para Signal processing - Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate whether autistic subjects show a different pattern of neural activity than healthy individuals during processing of faces and complex patterns. METHODS: Blood oxygen level-dependent (BOLD) signal changes accompanying visual processing of faces and complex patterns were analyzed in an autistic group (n = 7; 25.3 [6.9] years) and a control group (n = 7; 27.7 [7.8] years). RESULTS: Compared with unaffected subjects, autistic subjects demonstrated lower BOLD signals in the fusiform gyrus, most prominently during face processing, and higher signals in the more object-related medial occipital gyrus. Further signal increases in autistic subjects vs controls were found in regions highly important for visual search: the superior parietal lobule and the medial frontal gyrus, where the frontal eye fields are located. CONCLUSIONS: The cortical activation pattern during face processing indicates deficits in the face-specific regions, with higher activations in regions involved in visual search. These findings reflect different strategies for visual processing, supporting models that propose a predisposition to local rather than global modes of information processing in autism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic model updating must be considered for quantifying uncertainties inherently existing in real-world engineering structures. By this means the statistical properties,instead of deterministic values, of structural parameters can be sought indicating the parameter variability. However, the implementation of stochastic model updating is much more complicated than that of deterministic methods particularly in the aspects of theoretical complexity and low computational efficiency. This study attempts to propose a simple and cost-efficient method by decomposing a stochastic updating process into a series of deterministic ones with the aid of response surface models and Monte Carlo simulation. The response surface models are used as surrogates for original FE models in the interest of programming simplification, fast response computation and easy inverse optimization. Monte Carlo simulation is adopted for generating samples from the assumed or measured probability distributions of responses. Each sample corresponds to an individual deterministic inverse process predicting the deterministic values of parameters. Then the parameter means and variances can be statistically estimated based on all the parameter predictions by running all the samples. Meanwhile, the analysis of variance approach is employed for the evaluation of parameter variability significance. The proposed method has been demonstrated firstly on a numerical beam and then a set of nominally identical steel plates tested in the laboratory. It is found that compared with the existing stochastic model updating methods, the proposed method presents similar accuracy while its primary merits consist in its simple implementation and cost efficiency in response computation and inverse optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend in this paper some previous results concerning the differential-algebraic index of hybrid models of electrical and electronic circuits. Specifically, we present a comprehensive index characterization which holds without passivity requirements, in contrast to previous approaches, and which applies to nonlinear circuits composed of uncoupled, one-port devices. The index conditions, which are stated in terms of the forest structure of certain digraph minors, do not depend on the specific tree chosen in the formulation of the hybrid equations. Additionally, we show how to include memristors in hybrid circuit models; in this direction, we extend the index analysis to circuits including active memristors, which have been recently used in the design of nonlinear oscillators and chaotic circuits. We also discuss the extension of these results to circuits with controlled sources, making our framework of interest in the analysis of circuits with transistors, amplifiers, and other multiterminal devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A aquisição experimental de sinais neuronais é um dos principais avanços da neurociência. Por meio de observações da corrente e do potencial elétricos em uma região cerebral, é possível entender os processos fisiológicos envolvidos na geração do potencial de ação, e produzir modelos matemáticos capazes de simular o comportamento de uma célula neuronal. Uma prática comum nesse tipo de experimento é obter leituras a partir de um arranjo de eletrodos posicionado em um meio compartilhado por diversos neurônios, o que resulta em uma mistura de sinais neuronais em uma mesma série temporal. Este trabalho propõe um modelo linear de tempo discreto para o sinal produzido durante o disparo do neurônio. Os coeficientes desse modelo são calculados utilizando-se amostras reais dos sinais neuronais obtidas in vivo. O processo de modelagem concebido emprega técnicas de identificação de sistemas e processamento de sinais, e é dissociado de considerações sobre o funcionamento biofísico da célula, fornecendo uma alternativa de baixa complexidade para a modelagem do disparo neuronal. Além disso, a representação por meio de sistemas lineares permite idealizar um sistema inverso, cuja função é recuperar o sinal original de cada neurônio ativo em uma mistura extracelular. Nesse contexto, são discutidas algumas soluções baseadas em filtros adaptativos para a simulação do sistema inverso, introduzindo uma nova abordagem para o problema de separação de spikes neuronais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter presents a method to model propagation channels for estimation, in which the sampling scheme can be arbitrary. Additionally, the method yields accurate models, with a size that converges to the channel duration, measured in Nyquist periods. It can be viewed as an improvement on the usual discretization based on regular sampling at the Nyquist rate. The method is introduced in the context of multiple delay estimation using the MUSIC estimator, and is assessed through a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

v. 1. Multicomponent methods.--v. 2. Mathematical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modelling of froth transportation, as part of modelling of froth recovery, provides a scale-up procedure for flotation cell design. It can also assist in improving control of flotation operation. Mathematical models of froth velocity on the surface and froth residence time distribution in a cylindrical tank flotation cell are proposed, based on mass balance principle of the air entering the froth. The models take into account factors such as cell size, concentrate launder configuration, use of a froth crowder, cell operating conditions including froth height and air rate, and bubble bursting on the surface. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All signals that appear to be periodic have some sort of variability from period to period regardless of how stable they appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and thus has zero bandwidth around the sinusoid's frequency. A zero bandwidth is impossible in nature since all signals have some intrinsic variability over time. Deterministic sinusoids are used to model cycles as a mathematical convenience. Hinich [IEEE J. Oceanic Eng. 25 (2) (2000) 256-261] introduced a parametric statistical model, called the randomly modulated periodicity (RMP) that allows one to capture the intrinsic variability of a cycle. As with a deterministic periodic signal the RMP can have a number of harmonics. The likelihood ratio test for this model when the amplitudes and phases are known is given in [M.J. Hinich, Signal Processing 83 (2003) 1349-13521. A method for detecting a RMP whose amplitudes and phases are unknown random process plus a stationary noise process is addressed in this paper. The only assumption on the additive noise is that it has finite dependence and finite moments. Using simulations based on a simple RMP model we show a case where the new method can detect the signal when the signal is not detectable in a standard waterfall spectrograrn display. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper consides the problem of extracting the relationships between two time series in a non-linear non-stationary environment with Hidden Markov Models (HMMs). We describe an algorithm which is capable of identifying associations between variables. The method is applied both to synthetic data and real data. We show that HMMs are capable of modelling the oil drilling process and that they outperform existing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis presents a two-dimensional Risk Assessment Method (RAM) where the assessment of risk to the groundwater resources incorporates both the quantification of the probability of the occurrence of contaminant source terms, as well as the assessment of the resultant impacts. The approach emphasizes the need for a greater dependency on the potential pollution sources, rather than the traditional approach where assessment is based mainly on the intrinsic geo-hydrologic parameters. The risk is calculated using Monte Carlo simulation methods whereby random pollution events were generated to the same distribution as historically occurring events or a priori potential probability distribution. Integrated mathematical models then simulate contaminant concentrations at the predefined monitoring points within the aquifer. The spatial and temporal distributions of the concentrations were calculated from repeated realisations, and the number of times when a user defined concentration magnitude was exceeded is quantified as a risk. The method was setup by integrating MODFLOW-2000, MT3DMS and a FORTRAN coded risk model, and automated, using a DOS batch processing file. GIS software was employed in producing the input files and for the presentation of the results. The functionalities of the method, as well as its sensitivities to the model grid sizes, contaminant loading rates, length of stress periods, and the historical frequencies of occurrence of pollution events were evaluated using hypothetical scenarios and a case study. Chloride-related pollution sources were compiled and used as indicative potential contaminant sources for the case study. At any active model cell, if a random generated number is less than the probability of pollution occurrence, then the risk model will generate synthetic contaminant source term as an input into the transport model. The results of the applications of the method are presented in the form of tables, graphs and spatial maps. Varying the model grid sizes indicates no significant effects on the simulated groundwater head. The simulated frequency of daily occurrence of pollution incidents is also independent of the model dimensions. However, the simulated total contaminant mass generated within the aquifer, and the associated volumetric numerical error appear to increase with the increasing grid sizes. Also, the migration of contaminant plume advances faster with the coarse grid sizes as compared to the finer grid sizes. The number of daily contaminant source terms generated and consequently the total mass of contaminant within the aquifer increases in a non linear proportion to the increasing frequency of occurrence of pollution events. The risk of pollution from a number of sources all occurring by chance together was evaluated, and quantitatively presented as risk maps. This capability to combine the risk to a groundwater feature from numerous potential sources of pollution proved to be a great asset to the method, and a large benefit over the contemporary risk and vulnerability methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every high resolution imaging system suffers from the bottleneck problem. This problem relates to the huge amount of data transmission from the sensor array to a digital signal processing (DSP) and to bottleneck in performance, caused by the requirement to process a large amount of information in parallel. The same problem exists in biological vision systems, where the information, sensed by many millions of receptors should be transmitted and processed in real time. Models, describing the bottleneck problem solutions in biological systems fall in the field of visual attention. This paper presents the bottleneck problem existing in imagers used for real time salient target tracking and proposes a simple solution by employing models of attention, found in biological systems. The bottleneck problem in imaging systems is presented, the existing models of visual attention are discussed and the architecture of the proposed imager is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08