984 resultados para Signal Processing Research Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-optical data processing is expected to play a major role in future optical communications. Nonlinear effects in optical fibers have attractive applications in optical signal processing. In this paper, we review our recent advances in developing all-optical processing techniques at high speed based on optical fiber nonlinearities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-optical technologies for data processing and signal manipulation are expected to play a major role in future optical communications. Nonlinear phenomena occurring in optical fibre have many attractive features and great, but not yet fully exploited potential in optical signal processing. Here, we overview our recent results and advances in developing novel photonic techniques and approaches to all-optical processing based on fibre nonlinearities. Amongst other topics, we will discuss phase-preserving optical 2R regeneration, the possibility of using parabolic/flat-top pulses for optical signal processing and regeneration, and nonlinear optical pulse shaping. A method for passive nonlinear pulse shaping based on pulse pre-chirping and propagation in a normally dispersive fibre will be presented. The approach provides a simple way of generating various temporal waveforms of fundamental and practical interest. Particular emphasis will be given to the formation and characterization of pulses with a triangular intensity profile. A new technique of doubling/copying optical pulses in both the frequency and time domains using triangular-shaped pulses will be also introduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines recent progress in the use of semiconductor optical amplifiers for phase sensitive signal processing functions, a discussion of the world's first multi-wavelength regenerative wavelength conversion using semiconductor optical amplifiers for BPSK signals. OFC/NFOEC Technical Digest © 2013 OSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal. © 2013 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All-optical signal processing is a powerful tool for the processing of communication signals and optical network applications have been routinely considered since the inception of optical communication. There are many successful optical devices deployed in today’s communication networks, including optical amplification, dispersion compensation, optical cross connects and reconfigurable add drop multiplexers. However, despite record breaking performance, all-optical signal processing devices have struggled to find a viable market niche. This has been mainly due to competition from electro-optic alternatives, either from detailed performance analysis or more usually due to the limited market opportunity for a mid-link device. For example a wavelength converter would compete with a reconfigured transponder which has an additional market as an actual transponder enabling significantly more economical development. Never-the-less, the potential performance of all-optical devices is enticing. Motivated by their prospects of eventual deployment, in this chapter we analyse the performance and energy consumption of digital coherent transponders, linear coherent repeaters and modulator based pulse shaping/frequency conversion, setting a benchmark for the proposed all-optical implementations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method of signal preprocessing under active monitoring. Suppose we want to solve the inverse problem of getting the response of a medium to one powerful signal, which is equivalent to obtaining the transmission function of the medium, but do not have an opportunity to conduct such an experiment (it might be too expensive or harmful for the environment). Practically the problem can be reduced to obtaining the transmission function of the medium. In this case we can conduct a series of experiments of relatively low power and superpose the response signals. However, this method is conjugated with considerable loss of information (especially in the high frequency domain) due to fluctuations of the phase, the frequency and the starting time of each individual experiment. The preprocessing technique presented in this paper allows us to substantially restore the response of the medium and consequently to find a better estimate for the transmission function. This technique is based on expanding the initial signal into the system of orthogonal functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we introduce the periodic nonlinear Fourier transform (PNFT) and propose a proof-of-concept communication system based on it by using a simple waveform with known nonlinear spectrum (NS). We study the performance (addressing the bit-error-rate (BER), as a function of the propagation distance) of the transmission system based on the use of the PNFT processing method and show the benefits of the latter approach. By analysing our simulation results for the system with lumped amplification, we demonstrate the decent potential of the new processing method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been actively considered as a potential candidate for long-haul transmission and 400 Gb/s to 1 Tb/s Ethernet transport because of its high spectral efficiency, efficient implementation, flexibility and robustness against linear impairments such as chromatic dispersion and polarization mode dispersion. However, due to the long symbol duration and narrow subcarrier spacing, CO-OFDM systems are sensitive to laser phase noise and fibre nonlinearity induced penalties. As a result, the development of CO-OFDM transmission technology crucially relies on efficient techniques to compensate for the laser phase noise and fibre nonlinearity impairments. In this thesis, high performance and low complexity digital signal processing techniques for laser phase noise and fibre nonlinearity compensation in CO-OFDM transmissions are demonstrated. For laser phase noise compensation, three novel techniques, namely quasipilot-aided, decision-directed-free blind and multiplier-free blind are introduced. For fibre nonlinear compensation, two novel techniques which are referred to as phase conjugated pilots and phase conjugated subcarrier coding, are proposed. All these abovementioned digital signal processing techniques offer high performances and flexibilities while requiring relatively low complexities in comparison with other existing phase noise and nonlinear compensation techniques. As a result of the developments of these digital signal processing techniques, CO-OFDM technology is expected to play a significant role in future ultra-high capacity optical network. In addition, this thesis also presents preliminary study on nonlinear Fourier transform based transmission schemes in which OFDM is a highly suitable modulation format. The obtained result paves the way towards a truly flexible nonlinear wave-division multiplexing system that allows the current nonlinear transmission limitations to be exceeded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraoperative neurophysiologic monitoring is an integral part of spinal surgeries and involves the recording of somatosensory evoked potentials (SSEP). However, clinical application of IONM still requires anywhere between 200 to 2000 trials to obtain an SSEP signal, which is excessive and introduces a significant delay during surgery to detect a possible neurological damage. The aim of this study is to develop a means to obtain the SSEP using a much less, twelve number of recordings. The preliminary step involved was to distinguish the SSEP with the ongoing brain activity. We first establish that the brain activity is indeed quasi-stationary whereas an SSEP is expected to be identical every time a trial is recorded. An algorithm was developed using Chebychev time windowing for preconditioning of SSEP trials to retain the morphological characteristics of somatosensory evoked potentials (SSEP). This preconditioning was followed by the application of a principal component analysis (PCA)-based algorithm utilizing quasi-stationarity of EEG on 12 preconditioned trials. A unique Walsh transform operation was then used to identify the position of the SSEP event. An alarm is raised when there is a 10% time in latency deviation and/or 50% peak-to-peak amplitude deviation, as per the clinical requirements. The algorithm shows consistency in the results in monitoring SSEP in up to 6-hour surgical procedures even under this significantly reduced number of trials. In this study, the analysis was performed on the data recorded in 29 patients undergoing surgery during which the posterior tibial nerve was stimulated and SSEP response was recorded from scalp. This method is shown empirically to be more clinically viable than present day approaches. In all 29 cases, the algorithm takes 4sec to extract an SSEP signal, as compared to conventional methods, which take several minutes. The monitoring process using the algorithm was successful and proved conclusive under the clinical constraints throughout the different surgical procedures with an accuracy of 91.5%. Higher accuracy and faster execution time, observed in the present study, in determining the SSEP signals provide a much improved and effective neurophysiological monitoring process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communication has become an essential function in our civilization. With the increasing demand for communication channels, it is now necessary to find ways to optimize the use of their bandwidth. One way to achieve this is by transforming the information before it is transmitted. This transformation can be performed by several techniques. One of the newest of these techniques is the use of wavelets. Wavelet transformation refers to the act of breaking down a signal into components called details and trends by using small waveforms that have a zero average in the time domain. After this transformation the data can be compressed by discarding the details, transmitting the trends. In the receiving end, the trends are used to reconstruct the image. In this work, the wavelet used for the transformation of an image will be selected from a library of available bases. The accuracy of the reconstruction, after the details are discarded, is dependent on the wavelets chosen from the wavelet basis library. The system developed in this thesis takes a 2-D image and decomposes it using a wavelet bank. A digital signal processor is used to achieve near real-time performance in this transformation task. A contribution of this thesis project is the development of DSP-based test bed for the future development of new real-time wavelet transformation algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal processing techniques for mitigating intra-channel and inter-channel fiber nonlinearities are reviewed. More detailed descriptions of three specific examples highlight the diversity of the electronic and optical approaches that have been investigated.