978 resultados para Sforza, Caterina, 1463-1509.
Resumo:
In order to recognize an object in an image, we must determine the best transformation from object model to the image. In this paper, we show that for features from coplanar surfaces which undergo linear transformations in space, there exist projections invariant to the surface motions up to rotations in the image field. To use this property, we propose a new alignment approach to object recognition based on centroid alignment of corresponding feature groups. This method uses only a single pair of 2D model and data. Experimental results show the robustness of the proposed method against perturbations of feature positions.
Resumo:
Hutchison, K.; Alexander, N.; Quinn, B.; and Doherty, A. M. (2007). Internationalization motives and facilitating factors: Qualitative evidence from smaller specialist retailers. Journal of International Marketing. 15(3), pp.96-122 RAE2008
Resumo:
Rendle, M. (2005). Family, Kinship and Revolution: The Russian Nobility, 1917-1923. Family and Community History. 8(1), pp.35-47. RAE2008
Resumo:
Poolton, Nigel; Ozanyan, K.B.; Wallinga, J.; Murray, A.S., (2002) 'Electrons in feldspar II: a consideration of the influence of conduction band-tail states on luminescence processes', Physics and Chemistry of Minerals 29(3) pp.217-225 RAE2008
Resumo:
10 hojas: ilustraciones, fotografías (en blanco y negro ilegibles)
Resumo:
By utilizing structure sharing among its parse trees, a GB parser can increase its efficiency dramatically. Using a GB parser which has as its phrase structure recovery component an implementation of Tomita's algorithm (as described in [Tom86]), we investigate how a GB parser can preserve the structure sharing output by Tomita's algorithm. In this report, we discuss the implications of using Tomita's algorithm in GB parsing, and we give some details of the structuresharing parser currently under construction. We also discuss a method of parallelizing a GB parser, and relate it to the existing literature on parallel GB parsing. Our approach to preserving sharing within a shared-packed forest is applicable not only to GB parsing, but anytime we want to preserve structure sharing in a parse forest in the presence of features.
Resumo:
We postulate that exogenous losses-which are typically regarded as introducing undesirable "noise" that needs to be filtered out or hidden from end points-can be surprisingly beneficial. In this paper we evaluate the effects of exogenous losses on transmission control loops, focusing primarily on efficiency and convergence to fairness properties. By analytically capturing the effects of exogenous losses, we are able to characterize the transient behavior of TCP. Our numerical results suggest that "noise" resulting from exogenous losses should not be filtered out blindly, and that a careful examination of the parameter space leads to better strategies regarding the treatment of exogenous losses inside the network. Specifically, we show that while low levels of exogenous losses do help connections converge to their fair share, higher levels of losses lead to inefficient network utilization. We draw the line between these two cases by determining whether or not it is advantageous to hide, or more interestingly introduce, exogenous losses. Our proposed approach is based on classifying the effects of exogenous losses into long-term and short-term effects. Such classification informs the extent to which we control exogenous losses, so as to operate in an efficient and fair region. We validate our results through simulations.
Resumo:
Metal oxide clusters of sub-nm dimensions dispersed on a metal oxide support are an important class of catalytic materials for a number of key chemical reactions, showing enhanced reactivity over the corresponding bulk oxide. In this paper we present the results of a density functional theory study of small sub-nm TiO2 clusters, Ti2O4, Ti3O6 and Ti4O8 supported on the rutile (110) surface. We find that all three clusters adsorb strongly with adsorption energies ranging from -3 eV to -4.5 eV. The more stable adsorption structures show a larger number of new Ti-O bonds formed between the cluster and the surface. These new bonds increase the coordination of cluster Ti and O as well as surface oxygen, so that each has more neighbours. The electronic structure shows that the top of the valence band is made up of cluster derived states, while the conduction band is made up of Ti 3d states from the surface, resulting in a reduction of the effective band gap and spatial separation of electrons and holes after photon absorption, which shows their potential utility in photocatalysis. To examine reactivity, we study the formation of oxygen vacancies in the cluster-support system. The most stable oxygen vacancy sites on the cluster show formation energies that are significantly lower than in bulk TiO2, demonstrating the usefulness of this composite system for redox catalysis.
Resumo:
Time-dependent density functional theory (TDDFT) has broad application in the study of electronic response, excitation and transport. To extend such application to large and complex systems, we develop a reformulation of TDDFT equations in terms of non-orthogonal localized molecular orbitals (NOLMOs). NOLMO is the most localized representation of electronic degrees of freedom and has been used in ground state calculations. In atomic orbital (AO) representation, the sparsity of NOLMO is transferred to the coefficient matrix of molecular orbitals (MOs). Its novel use in TDDFT here leads to a very simple form of time propagation equations which can be solved with linear-scaling effort. We have tested the method for several long-chain saturated and conjugated molecular systems within the self-consistent charge density-functional tight-binding method (SCC-DFTB) and demonstrated its accuracy. This opens up pathways for TDDFT applications to large bio- and nano-systems.
Resumo:
El presente artículo recopila la experiencia de expertos en la etnomatemática, de un grupo de discusión en RELME 27. Sus cuestionamientos se fundamentan, en la etnomatemática y el impacto de esta en el currículo escolar. Se toma en cuenta las características sociales del sistema educativo latinoamericano, los objetivos de desarrollo del milenio y el impacto de ambos, sobre la educación matemática de los pueblos originarios. Se plantean retos futuros y una visión sobre la recuperación de los saberes matemáticos. Metodológicamente se sustenta como una investigación de enfoque cualitativo, con diseño de teoría fundamental, donde sus datos se analizan por codificación abierta axial.
Resumo:
Abstract not available for this paper.
Resumo:
This paper presents modelling and design optimization of a microfeeder which, as part of a microassembly system, is used for contactless object delivery. The microfeeder consists of an array of microactuators which are controlled by electrostatic actuation and used for maneuvering outcoming air jet for object hovering and delibery. The airflow behaviour in the microactuator is analysed by means of fluid mechanics and Computational Fluid Dynamics (CFD) simulation from three aspects, theoretical analysis, initial design assessment, and design modifications. The focus is put on the basic types of the microfeeder structure and the effects of structural details to the systematic performance. The structural pattern of the microactuator for forming airflow nozzle is identified and two design plans are proposed as basic structure patterns of pneumatic microactuators. The optimized design numerically shows the ability of delivering objects. This paper analyses the flow distribution pattern in microactuators and points out a way for effective design of pneumatic microfeeder systems. The optimization strategy provided by the present paper has close relevance to the design and manufacture of pneumatic microfeeder systems.
Resumo:
The surface-enhanced Raman scattering (SERS) spectra of rhodanine adsorbed on silver nanoparticles have been examined using 514.5 and 632.8 nm excitation. There is evidence that, under the experimental conditions used, rhodanine undergoes a nanoparticle surface-induced reaction resulting in the formation of a dimeric species via the active methylene group in a process which is analogous to the Knoevenagel reaction. The experimental observations are supported by DFT calculations at the B3-LYP/cc-pVDZ level. Calculated energies for the interaction of the E and Z isomers of the dimers of rhodanine with silver nanoparticles support a model in which the (intra-molecular hydrogen bonded) E isomer dimer is of lower energy than the Z isomer. A strong band, at 1566 cm(-1), in the SERS spectrum of rhodanine is assigned to the nu(C=C) mode of the dimer species.