959 resultados para Severe Plastic-Deformation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sliding tests were conducted, in air, of YTZP ceramic pins against steel discs at an applied pressure of 15.5 MPa over a speed range of 0.3 to 4.0 ms(-1). Pin wear was not detectable until 2.0 m s(-1), after which a finite but small wear rate was observed at 3.0 m s(-1), accompanied by a red glow at the contacting surface. A transition in wear behaviour and friction (mu) occurred at 4.0 ms(-1), increasing the former by over two orders of magnitude. Both mu and wear behaviour changed with time at 4.0 m s(-1). During initial periods mu was high and wear rate increased steadily with time accompanied by ceramic transfer onto the disc, which increased with time. When disc coverage exceeds a certain threshold value, mu decreased rapidly and the wear rate stabilized at a very high value. Metal transfer was not observed at any speed. High surface temperatures brought about significant adhesion between TZP and steel and this together with enhanced plastic deformation brought about a transition in wear behaviour.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Copper with four widely differing grain sizes was subjected to high-strain-rate plastic deformation in a special experimental arrangement in which high shear strains of approximately 2 to 7 were generated. The adiabatic plastic deformation produced temperature rises in excess of 300 K, creating conditions favorable for dynamic recrystallization, with an attendant change in the mechanical response. Preshocking of the specimens to an amplitude of 50 GPa generated a high dislocation density; twinning was highly dependent on grain size, being profuse for the 117- and 315-mu m grain-size specimens and virtually absent for the 9.5-mu m grain-size specimens. This has a profound effect on the subsequent mechanical response of the specimens, with the smaller grain-size material undergoing considerably more hardening than the larger grain-size material. A rationale is proposed which leads to a prediction of the shock threshold stress for twinning as a function of grain size. The strain required for localization of plastic deformation was dependent on the combined grain size/shock-induced microstructure, with the large grain-size specimens localizing more readily. The experimental results obtained are rationalized in terms of dynamic recrystallization, and a constitutive equation is applied to the experimental results; it correctly predicts the earlier onset of localization for the large grain-size specimens. It is suggested that the grain-size dependence of shock response can significantly affect the performance of shaped charges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Full-scale test embankments, with and without geotextile reinforcement, were constructed on soft Bangkok clay. The performances of these embankments are evaluated and compared with each other on the basis of field measurements and FEM analysis. The analyses of failure mechanisms and the investigations on the embankment stability using undrained conditions were also done to determine the critical embankment height and the corresponding geotextile strain. The high-strength geotextile can reduce the plastic deformation in the underlying foundation soil, increase the collapse height of the embankment on soft ground, and produce a two-step failure mechanism. In this case study, the critical strain in the geotextile corresponding to the primary failure of foundation soils may be taken as 2.5-3% irrespective of the geotextile reinforcement stiffness. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the formation of a stable Body-Centered Heptahedral (BCH) crystalline nanobridge structure of diameter ~ 1nm under high strain rate tensile loading to a <100> Cu nanowire. Extensive Molecular Dynamics (MD) simulations are performed. Six different cross-sectional dimensions of Cu nanowires are analyzed, i.e. 0.3615 x 0.3615 nm2, 0.723 x 0.723 nm2, 1.0845 x 1.0845 nm2, 1.446 x 1.446 nm2, 1.8075 x 1.8075 nm2, and 2.169 x 2.169 nm2. The strain rates used in the present simulations are 1 x 109 s-1, 1 x 108 s-1, and 1 x 107 s-1. We have shown that the length of the nanobridge can be characterized by larger plastic strain. A large plastic deformation is an indication that the structure is highly stable. The BCH nanobridge structure also shows enhanced mechanical properties such as higher fracture toughness and higher failure strain. The effect of temperature, strain rate and size of the nanowire on the formation of BCH structure is also explained in details. We also show that the initial orientation of the nanowires play an important role on the formation of BCH crystalline structure. Results indicate that proper tailoring of temperature and strain rate during processing or in the device can lead to very long BCH nanobridge structure of Cu with enhanced mechanical properties, which may find potential application for nano-scale electronic circuits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study is made of the rotation field in wedge indentation of metals using copper as the model material system. Wedges with apical angles of 60 and 120 are used to indent annealed copper, and the deformation is mapped using image correlation. The indentation of annealed and strain-hardened copper is simulated using finite element analysis. The rotation field, derived from the deformation measurements, provides a clear way of distinguishing between cutting and compressive modes of deformation. Largely unidirectional rotation on one side of the symmetry line with small spatial rotation gradients is characteristic of compression. Bidirectional rotation with neighboring regions of opposing rotations and locally high rotation gradients characterizes cutting. In addition, the rotation demarcates such characteristic regions as the pile-up zone in indentation of a strain-hardened metal. The residual rotation field obtained after unloading is essentially the same as that at full load, indicating that it is a scalar proxy for plastic deformation as a whole.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium-carbon (Ti-C) thin films of different compositions were prepared by a combination of pulsed DC (for Ti target) and normal DC (for graphite target) magnetron co-sputtering on oxidized silicon and fused quartz substrates. At 33.7 at.% of C content, pure hcp Ti transforms into fcc-TiC with a preferential orientation of (2 2 0) along with (1 1 1) and (2 0 0). A clear transformation in the preferential orientation from (2 2 0) to (1 1 1) has been observed when the C content was increased to 56 at.%. At 62.5 at.% of C, TiC precipitates in an amorphous carbon matrix whereas further increase in C leads to X-ray amorphous films. The cross-sectional scanning electron microscope images reveal that the films with low carbon content consists of columnar grains, whereas, randomly oriented grains are in an amorphous carbon matrix at higher carbon content. A dramatic variation was observed in the mechanical properties such as hardness, H, from 30 to 1 GPa and in modulus, E, from 255 to 25 GPa with varying carbon content in the films. Resistance to plastic deformation parameter was observed as 0.417 for films containing 62.5 at.% of C. Nanoscratch test reveals that the films are highly scratch resistant with a coefficient of friction ranging from 0.15 to 0.04. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Room temperature, uniaxial compression creep experiments were performed on micro-/nano-sized pillars (having diameters in the range of 250-2000 nm) of a Zr-based bulk metallic glass (BMG) to investigate the influence of sample size on the time-dependent plastic deformation behavior in amorphous alloys. Experimental results reveal that plastic deformation indeed occurs at ambient temperature and at stresses that are well below the nominal quasi-static yield stress. At a given stress, higher total strains accrue in the smaller specimens. In all cases, plastic deformation was found to be devoid of shear bands, i.e., it occurs in homogeneous manner. The stress exponent obtained from the slope of the linear relation between strain rate and applied stress also shows a strong size effect, which is rationalized in terms of the amount of free volume created during deformation and the surface-to-volume ratio of the pillar. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a numerical model for friction welding of thixo-cast materials is developed, which includes a coupling of thermal effect and plastic deformation using a finite element method (FEM). As the constitutive equations for flow behavior of materials for a thixo-cast material are expected to be different from those of conventionally cast material of the same alloy, the necessary material data are experimentally determined from isothermal hot compression tests of the A356 thixocast alloy. The Johnson-Cook model has been employed to represent the flow behavior of the thixocast A356 alloy. The purpose of this FEM analysis is to provide better understanding of the friction welding process of thixo-cast material, and to obtain optimized process parameters before an actual welding is carried out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of strain rate, (epsilon) over dot, and temperature, T, on the tension-compression asymmetry (TCA) in a dilute and wrought Mg alloy, AM30, over a temperature range that covers both twin accommodated deformation (below 250 degrees C in compression) as well as dislocation-mediated plasticity (above 250 degrees C) has been investigated. For this purpose, uniaxial tension and compression tests were conducted at T ranging from 25 to 400 degrees C with (epsilon) over dot varying between 10(-2) and 10 s(-1). In most of the cases, the stress-strain responses in tension and compression are distinctly different; with compression responses `concaving upward,' due to {10 (1) over bar2} tensile twinning at lower plastic strains followed by slip and strain hardening at higher levels of deformation, for T below 250 degrees C. This results in significant levels of TCA at T < 250 degrees C, reducing substantially at high temperatures. At T=150 and 250 degrees C, high (epsilon) over dot leads to high TCA, in particular at T=250 degrees C and (epsilon) over dot=10 s(-1), suggesting that twin-mediated plastic deformation takes precedence at high rates of loading even at sufficiently high T. TCA becomes negligible at T=350 degrees C; however at T=400 degrees C, as (epsilon) over dot increases TCA gets higher. Microscopy of the deformed samples, carried out by using electron back-scattered diffraction (EBSD), suggests that at T > 250 degrees C dynamic recrystallization begins between accompanied by reduction in the twinned fraction that contributes to the decrease of the TCA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adhesive wear has been widely accepted as the type of wear which is most frequently encountered under fretting conditions. Present study has been carried out to study the mode of failure and mechanisms associated under conditions where strong adhesion prevails at the contact interface. Mechanical variables such as normal load, displacement amplitude, and environment conditions were controlled so as to simulate adhesion as the governing mechanism at the contact interface. Self-mated Stainless Steel (SS) and chromium carbide with 25% nickel chrome binder coatings using plasma spray and high-velocity oxy-fuel (HVOF) processes on SS were considered as the material for contacting bodies. Damage in the form of plastic deformation, fracture, and material transfer has been observed. Further, chromium carbide with 25% nickel chrome binder coatings using HVOF process on SS shows less fretting damage, and can be considered as an effective palliative against fretting damage, even under high vacuum conditions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although weak interactions, such as C-H center dot center dot center dot O and pi-stacking, are generally considered to be insignificant, it is their reorganization that holds the key for many a solid-state phenomenon, such as phase transitions, plastic deformation, elastic flexibility, and mechanochromic luminescence in solid-state fluorophores. Despite this, the role of weak interactions in these dynamic phenomena is poorly understood. In this study, we investigate two co-crystal polymorphs of caffeine:4-chloro-3-nitrobenzoic acid, which have close structural similarity (2D layered structures), but surprisingly show distinct mechanical behavior. Form I is brittle, but shows shear-induced phase instability and, upon grinding, converts to Form II, which is soft and plastically shearable. This observation is in contrast to those reported in earlier studies on aspirin, wherein the metastable drug forms are softer and convert to stable and harder forms upon stressing To establish a molecular level understanding, have investigated the two co-crystal polymorphs I and II by single crystal X-ray diffraction, nanoindentation to quantify mechanical properties, and theoretical calculations. The lower hardness (from nanoindentation) and smooth potential surfaces (from theoretical studies) for shearing of layers in Form II allowed us to rationalize the role of stronger intralayer (sp(2))C-H center dot center dot center dot O and nonspecific interlayer pi-stacking interactions in the structure of II. Although the Form I also possesses the same type of interactions, its strength is clearly opposite, that is, weaker intralayer (sp(3))C-H center dot center dot center dot O and specific interlayer pi-stacking interactions. Hence, Form I is harder than Form IL Theoretical calculations and indentation on (111) of Form I suggested the low resistance of this face to mechanical stress; thus, Form I converts to II upon mechanical action. Hence, our approach demonstrates the usefulness of multiple techniques for establishing the role of weak noncovalent interactions in solid-state dynamic phenomena, such as stress induced phase transformation, and hence is important in the context of solid-state pharmaceutical chemistry and crystal engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the fracture behavior of magnesium single crystals is studied by conducting experiments with notched three point bend specimens of three crystallographic orientations. In the first and second orientations, the c-axis is along the normal to the flat surface of the notch, while in the third it is aligned with the notch front. For all the orientations, in situ electron back scattered diffraction observations made around the notch root show profuse tensile twinning of {10 (1) over bar2} type. Further, in the first two orientations basal and prismatic slip traces are identified from optical metallography. The width of the most prominent twin saturates at around 120-150 mu m, while twins continue to nucleate farther away to accommodate plastic deformation. In all the orientations, crack initiation occurs before the attainment of peak load and the crack grows stably along twin-matrix interface before deflecting at twin-twin intersections. Results show that profuse tensile twinning is an important energy dissipating mechanism that enhances the fracture toughness. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uniaxial compression experiments were conducted on two magnesium (Mg) single crystals whose crystallographic orientations facilitate the deformation either by basal slip or by extension twinning. Specimen size effects were examined by conducting experiments on mu m- and mm-sized samples. A marked specimen size effect was noticed, with micropillars exhibiting significantly higher flow stress than bulk samples. Further, it is observed that the twin nucleation stress exerts strong size dependence, with micropillars requiring substantially higher stress than the bulk samples. The flow curves obtained on the bulk samples are smooth whereas those obtained from micropillars exhibit intermittent and precipitous stress drops. Electron backscattered diffraction and microstructural analyses of the deformed samples reveal that the plastic deformation in basal slip oriented crystals occurs only by slip while twin oriented crystals deform by both slip and twinning modes. The twin oriented crystals exhibit a higher strain hardening during plastic deformation when compared to the single slip oriented crystals. The strain hardening rate, theta, of twin oriented crystals is considerably greater in micropillars compared to the bulk single crystals, suggesting the prevalence of different work hardening mechanisms at these different sample sizes. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of the flow rule on the bearing capacity of strip foundations placed on sand was investigated using a new kinematic approach of upper-bound limit analysis. The method of stress characteristics was first used to find the mechanism of the failure and to compute the stress field by using the Mohr-Coulomb yield criterion. Once the failure mechanism had been established, the kinematics of the plastic deformation was established, based on the requirements of the upper-bound limit theorem. Both associated and nonassociated plastic flows were considered, and the bearing capacity was obtained by equating the rate of external plastic work to the rate of the internal energy dissipation for both smooth and rough base foundations. The results obtained from the analysis were compared with those available from the literature. (C) 2014 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stability of a long circular tunnel in a cohesive frictional soil medium has been determined in the presence of horizontal pseudo-static seismic body forces. The tunnel is supported by means of lining and anchorage system which is assumed to exert uniform internal compressive normal pressure on its periphery. The upper bound finite element limit analysis has been performed to compute the magnitude of the internal compressive pressure required to support the tunnel. The results have been presented in terms of normalized compressive normal stress, defined in terms of sigma(i)/c; where sigma(i) is the magnitude of the compressive normal pressure on the periphery of the tunnel and c refers to soil cohesion. The variation of sigma(i)/c with horizontal earthquake acceleration coefficient (alpha(h)) has been established for different combinations of H/D, gamma D/c and phi where (i) H and D refers to tunnel cover and diameter, respectively, and (ii) gamma and phi correspond to unit weight and internal friction angle of soil mass, respectively. Nodal velocity patterns have also been plotted for assessing the zones of significant plastic deformation. The analysis clearly reveals that an increase in the magnitude of the earthquake acceleration leads to a significant increment in the magnitude of internal compressive pressure. (C) 2014 Elsevier Ltd. All rights reserved.