980 resultados para Sertoli cell barrier
Resumo:
A cell of the bacterium Escherichia coli was tethered covalently to a glass coverslip by a single flagellum, and its rotation was stopped by using optical tweezers. The tweezers acted directly on the cell body or indirectly, via a trapped polystyrene bead. The torque generated by the flagellar motor was determined by measuring the displacement of the laser beam on a quadrant photodiode. The coverslip was mounted on a computer-controlled piezo-electric stage that moved the tether point in a circle around the center of the trap so that the speed of rotation of the motor could be varied. The motor generated ≈4500 pN nm of torque at all angles, regardless of whether it was stalled, allowed to rotate very slowly forwards, or driven very slowly backwards. This argues against models of motor function in which rotation is tightly coupled to proton transit and back-transport of protons is severely limited.
Resumo:
We report herein the successful long term engraftment of highly purified hematopoietic stem cells (HSCs) without any facilitating cells in fully allogeneic recipient mice across the entire major histocompatibility complex (MHC) transplantation barrier. This finding challenges the assumption that highly purified marrow HSCs alone cannot produce long-lived allogeneic bone marrow chimeras across the MHC barrier. In the present experiments, 1 × 105 HSCs from 5-fluorouracil (5-FU)-treated donors, without any facilitating cells, have been found to repopulate lethally irradiated fully allogeneic recipients. Low density, lineage-negative (CD4−, CD8−, B220−, Mac-1−, Gr-1−), CD71-negative, class I highly positive, FACS-sorted cells from 5-FU-treated C57BL/6 (B6) donor mice were transplanted into lethally irradiated BALB/c recipients. (BALB/c → BALB/c) → BALB/c T cell-depleted marrow cells used as compromised cells were also transplanted into the recipients to permit experiments to be pursued over a long period of time. Cells of donor origin in all recognized lineages of hematopoietic cells developed in these allogeneic chimeras. One thousand HSCs were sufficient to repopulate hemiallogeneic recipients, but 1 × 104 HSCs alone from 5-FU-treated donors failed to repopulate the fully allogeneic recipients. Transplantation of primary marrow stromal cells or bones of the donor strain into recipient, together with 1 × 104 HSCs, also failed to reconstitute fully allogeneic recipients. Suppression of resistance of recipients by thymectomy or injections of granulocyte colony-stimulating factor before stem cell transplantation enhanced the engraftment of allogeneic HSCs. Our experiments show that reconstitution of all lymphohematopoietic lineages across the entire MHC transplantation barriers may be achieved by transplanting allogeneic HSCs alone, without any facilitating cells, as long as a sufficient number of HSCs is transplanted.
Resumo:
Endothelial barrier function is regulated at the cellular level by cytoskeletal-dependent anchoring and retracting forces. In the present study we have examined the signal transduction pathways underlying agonist-stimulated reorganization of the actin cytoskeleton in human umbilical vein endothelial cells. Receptor activation by thrombin, or the thrombin receptor (proteinase-activated receptor 1) agonist peptide, leads to an early increase in stress fiber formation followed by cortical actin accumulation and cell rounding. Selective inhibition of thrombin-stimulated signaling systems, including Gi/o (pertussis toxin sensitive), p42/p44, and p38 MAP kinase cascades, Src family kinases, PI-3 kinase, or S6 kinase pathways had no effect on the thrombin response. In contrast, staurosporine and KT5926, an inhibitor of myosin light chain kinase, effectively blocked thrombin-induced cell rounding and retraction. The contribution of Rho to these effects was analyzed by using bacterial toxins that either activate or inhibit the GTPase. Escherichia coli cytotoxic necrotizing factor 1, an activator of Rho, induced the appearance of dense actin cables across cells without perturbing monolayer integrity. Accordingly, lysophosphatidic acid, an activator of Rho-dependent stress fiber formation in fibroblasts, led to reorganization of polymerized actin into stress fibers but failed to induce cell rounding. Inhibition of Rho with Clostridium botulinum exoenzyme C3 fused to the B fragment of diphtheria toxin caused loss of stress fibers with only partial attenuation of thrombin-induced cell rounding. The implication of Rac and Cdc42 was analyzed in transient transfection experiments using either constitutively active (V12) or dominant-interfering (N17) mutants. Expression of RacV12 mimicked the effect of thrombin on cell rounding, and RacN17 blocked the response to thrombin, whereas Cdc42 mutants were without effect. These observations suggest that Rho is involved in the maintenance of endothelial barrier function and Rac participates in cytoskeletal remodeling by thrombin in human umbilical vein endothelial cells.
Resumo:
The espins are actin-binding and -bundling proteins localized to parallel actin bundles. The 837-amino-acid “espin” of Sertoli cell–spermatid junctions (ectoplasmic specializations) and the 253-amino-acid “small espin” of brush border microvilli are splice isoforms that share a C-terminal 116-amino-acid actin-bundling module but contain different N termini. To investigate the roles of espin and its extended N terminus, we examined the actin-binding and -bundling properties of espin constructs and the stoichiometry and developmental accumulation of espin within the ectoplasmic specialization. An espin construct bound to F-actin with an approximately threefold higher affinity (Kd = ∼70 nM) than small espin and was ∼2.5 times more efficient at forming bundles. The increased affinity appeared to be due to an additional actin-binding site in the N terminus of espin. This additional actin-binding site bound to F-actin with a Kd of ∼1 μM, decorated actin stress fiber-like structures in transfected cells, and was mapped to a peptide between the two proline-rich peptides in the N terminus of espin. Espin was detected at ∼4–5 × 106 copies per ectoplasmic specialization, or ∼1 espin per 20 actin monomers and accumulated there coincident with the formation of parallel actin bundles during spermiogenesis. These results suggest that espin is a major actin-bundling protein of the Sertoli cell–spermatid ectoplasmic specialization.
Resumo:
In vivo, retroviral integration is mediated by a large nucleoprotein complex, termed the preintegration complex (PIC). PICs isolated from infected cells display in vitro integration activity. Here, we analyze the roles of different host cell factors in the structure and function of HIV type 1 (HIV-1) PICs. PICs purified by size exclusion after treatment with high salt lost their integration activity, and adding back an extract from uninfected cells restored this activity. In parallel, the native protein–DNA intasome structure detected at the ends of HIV-1 by Mu-mediated PCR footprinting was abolished by high salt and restored by the crude cell extract. Various purified proteins previously implicated in retroviral PIC function then were analyzed for their effects on the structure and function of salt-treated HIV-1 PICs. Whereas relatively low amounts (5–20 nM) of human barrier-to-autointegration factor (BAF) protein restored integration activity, substantially more (5–10 μM) human host factor HMG I(Y) was required. Similarly high levels (3–8 μM) of bovine RNase A, a DNA-binding protein used as a nonspecific control, also restored activity. Mu-mediated PCR footprinting revealed that of these three purified proteins, only BAF restored the native structure of the HIV-1 protein–DNA intasome. We suggest that BAF is a natural host cofactor for HIV-1 integration.
Resumo:
Spermatogenic cells exhibit a lower spontaneous mutation frequency than somatic tissues in a lacI transgene and many base excision repair (BER) genes display the highest observed level of expression in the testis. In this study, uracil-DNA glycosylase-initiated BER activity was measured in nuclear extracts prepared from tissues obtained from each of three mouse strains. Extracts from mixed spermatogenic germ cells displayed the greatest activity followed by liver then brain for all three strains, and the activity for a given tissue was consistent among the three strains. Levels of various BER proteins were examined by western blot analyses and found to be consistent with activity levels. Nuclear extracts prepared from purified Sertoli cells, a somatic component of the seminiferous epithelium, exhibited significantly lower activity than mixed spermatogenic cell-type nuclear extracts, thereby suggesting that the high BER activity observed in mixed germ cell nuclear extracts was not a characteristic of all testicular cell types. Nuclear extracts from thymocytes and small intestines were assayed to assess activity in a mitotically active cell type and tissue. Overall, the order of tissues/cells exhibiting the greatest to lowest activity was mixed germ cells > Sertoli cells > thymocytes > small intestine > liver > brain.
Resumo:
Ascorbate peroxidase (AP) is a key enzyme that scavenges potentially harmful H2O2 and thus prevents oxidative damage in plants, especially in N2-fixing legume root nodules. The present study demonstrates that the nodule endodermis of alfalfa (Medicago sativa) root nodules contains elevated levels of AP protein, as well as the corresponding mRNA transcript and substrate (ascorbate). Enhanced AP protein levels were also found in cells immediately peripheral to the infected region of soybean (Glycine max), pea (Pisum sativum), clover (Trifolium pratense), and common bean (Phaseolus vulgaris) nodules. Regeneration of ascorbate was achieved by (homo)glutathione and associated enzymes of the ascorbate-glutathione pathway, which were present at high levels. The presence of high levels of antioxidants suggests that respiratory consumption of O2 in the endodermis or nodule parenchyma may be an essential component of the O2-diffusion barrier that regulates the entry of O2 into the central region of nodules and ensures optimal functioning of nitrogenase.
Resumo:
Vaccination with cytokine-producing tumor cells generates potent immune responses against tumors outside the central nervous system (CNS). The CNS, however, is a barrier to allograft and xenograft rejection, and established tumors within the CNS have failed to respond to other forms of systemic immunotherapy. To determine what barriers the "immunologically privileged" CNS would pose to cytokine-assisted tumor vaccines and what cytokines would be most efficacious against tumors within the CNS, we irradiated B16 murine melanoma cells producing murine interleukin 2 (IL-2), IL-3, IL-4, IL-6, gamma-interferon, or granulocyte-macrophage colony stimulating factor (GM-CSF) and used these cells as subcutaneous vaccines against tumors within the brain. Under conditions where untransfected B16 cells had no effect, cells producing IL-3, IL-6, or GM-CSF increased the survival of mice challenged with viable B16 cells in the brain. Vaccination with B16 cells producing IL-4 or gamma-interferon had no effect, and vaccination with B16 cells producing IL-2 decreased survival time. GM-CSF-producing vaccines were also able to increase survival in mice with pre-established tumors. The response elicited by GM-CSF-producing vaccines was found to be specific to tumor type and to be abrogated by depletion of CD8+ cells. Unlike the immunity generated against subcutaneous tumors by GM-CSF, however, the effector responses generated against tumors in the CNS were not dependent on CD4+ cells. These data suggest that cytokine-producing tumor cells are very potent stimulators of immunity against tumors within the CNS, but effector responses in the CNS may be different from those obtained against subcutaneous tumors.
Resumo:
Fermentation of nonabsorbed nutrients in the colon generates high concentrations of NH3/NH4+ in the colonic lumen. NH3 is a small, lipophilic neutral weak base that readily permeates almost all cell membranes, whereas its conjugate weak acid NH4+ generally crosses membranes much more slowly. It is not known how colonocytes maintain intracellular pH in the unusual acid-base environment of the colon, where permeant acid-base products of fermentation exist in high concentration. To address this issue, we hand dissected and perfused single, isolated crypts from rabbit proximal colon, adapting techniques from renal-tubule microperfusion. Crypt perfusion permits control of solutions at the apical (luminal) and basolateral (serosal) surfaces of crypt cells. We assessed apical- vs. basolateral-membrane transport of NH3/NH4+ by using fluorescent dyes and digital imaging to monitor intracellular pH of microvacuolated crypt cells as well as luminal pH. We found that, although the basolateral membranes have normal NH3/NH4+ permeability properties, there is no evidence for transport of either NH3 or NH4+ across the apical borders of these crypt cells. Disaggregating luminal mucus did not increase the transport of NH3/NH4+ across the apical border. We conclude that, compared to the basolateral membrane, the apical border of crypt colonocytes has a very low permeability-area product for NH3/NH4+. This barrier may represent an important adaptation for the survival of crypt cells in the environment of the colon.
Resumo:
The delivery of viral vectors to the brain for treatment of intracerebral tumors is most commonly accomplished by stereotaxic inoculation directly into the tumor. However, the small volume of distribution by inoculation may limit the efficacy of viral therapy of large or disseminated tumors. We have investigated mechanisms to increase vector delivery to intracerebral xenografts of human LX-1 small-cell lung carcinoma tumors in the nude rat. The distribution of Escherichia coli lacZ transgene expression from primary viral infection was assessed after delivery of recombinant virus by intratumor inoculation or intracarotid infusion with or without osmotic disruption of the blood-brain barrier (BBB). These studies used replication-compromised herpes simplex virus type 1 (HSV; vector RH105) and replication-defective adenovirus (AdRSVlacZ), which represent two of the most commonly proposed viral vectors for tumor therapy. Transvascular delivery of both viruses to intracerebral tumor was demonstrated when administered intraarterially (i.a.) after osmotic BBB disruption (n = 9 for adenovirus; n = 7 for HSV), while no virus infection was apparent after i.a. administration without BBB modification (n = 8 for adenovirus; n = 4 for HSV). The thymidine kinase-negative HSV vector infected clumps of tumor cells as a result of its ability to replicate selectively in dividing cells. Osmotic BBB disruption in combination with i.a. administration of viral vectors may offer a method of global delivery to treat disseminated brain tumors.
Resumo:
The expression of the cell adhesion molecules ICAM-1, ICAM-2, and VCAM-1 and the secretion of the cytokine interleukin 6 have been measured in mouse Sertoli cells cultured in vitro. Cytometric analysis revealed that, in basal conditions, low levels of ICAM-1 and VCAM-1 were present on the surface of the cells, whereas treatment with interleukin 1, tumor necrosis factor alpha, lipopolysaccharide, or interferon gamma induced, with different kinetics, increases in their expression. ICAM-2 was not detectable in basal conditions, nor was it inducible. Electron microscopic analysis and binding experiments using 51Cr-labeled lymphocytes demonstrated that increased expression of ICAM-1 and VCAM-1 on the surface of Sertoli cells, induced by inflammatory mediators, determines an augmented adhesion between the two cell types. The same stimuli, with the exception of interferon gamma, produced a rapid and remarkable increment of interleukin 6 production by Sertoli cells. These results suggest the presence of both direct and paracrine mechanisms of interaction between Sertoli and immune-competent cells, possibly involved in the control of immune reactions in the testis. Such mechanisms are of interest for the understanding of autoimmune pathologies of the testis and, if confirmed in humans, they could be involved in the sexual transmission of human immunodeficiency virus infection.
Resumo:
The BZLF1 antigen of Epstein-Barr virus includes three overlapping sequences of different lengths that conform to the binding motif of human leukocyte antigen (HLA) B*3501. These 9-mer ((56)LPOGQLTAy(64)), 11-mer ((54)EPLPQGQLTAy(64)), and 13-mer ((52)LPEPLPQGQLTAY(64)) peptides all bound well to B*3501; however, the CTL response in individuals expressing this HILA allele was directed strongly and exclusively towards the 11-mer peptide. In contrast, EBV-exposed donors expressing HLA B*3503 showed no significant CTL response to these peptides because the single amino acid difference between B*3501 and B*3503 within the F pocket inhibited HLA binding by these peptides. The extraordinarily long 13-mer peptide was the target for the CTL response in individuals expressing B*3508, which differs from B*3501 at a single position within the D pocket (B*3501, 156 Leucine; B*3508, 156 Arginine). This minor difference was shown to enhance binding of the 13-mer peptide, presumably through a stabilizing interaction between the negatively charged glutamate at position 3 of the peptide and the positively charged arginine at HLA position 156. The 13-mer epitope defined in this study represents the longest class I-binding viral epitope identified to date as a minimal determinant. Furthermore, the potency of the response indicates that peptides of this length do not present a major structural barrier to CTL recognition.
Resumo:
Background: Echinacea is composed of three major groups of compounds that are thought to be responsible for stimulation of the immune system-the caffeic acid conjugates, alkylamides and polysaccharides. This study has focussed on the former two classes, as these are the constituents found in ethanolic liquid extracts. Objective: To investigate the absorption of these two groups of compounds using Caco-2 monolayers, which are a model of the intestinal epithelial barrier. Results: The caffeic acid conjugates (caftaric acid, echinacoside and cichoric acid) permeated poorly through the Caco-2 monolayers although one potential metabolite, cinnamic acid, diffused readily with an apparent permeability (P-app) of 1x10(-4) cm/s. Alkylamides were found to diffuse through Caco-2 monolayers with P-app ranging from 3x10(-6) to 3x10(-4) cm/s. This diversity in P-app for the different alkylamides correlates to structural variations, with saturation and N-terminal methylation contributing to decreases in P-app. The transport of the alkylamides is not affected by the presence of other constituents and the results for synthetic alkylamides were in line with those for the alkylamides in the echinacea preparation. Conclusion: Alkylamides but not caffeic acid conjugates are likely to cross the intestinal barrier.
Resumo:
Rising sea temperatures are increasing the incidences of mass coral bleaching (the dissociation of the coral-algal symbiosis) and coral mortality. In this study, the effects of bleaching (induced by elevated light and temperature) on the condition of symbiotic dinoflagellates (Symbiodinium sp.) within the tissue of the hard coral Stylophora pistillata (Esper) were assessed using a suite of techniques. Bleaching of S. pistillata was accompanied by declines in the maximum potential quantum yield of photosynthesis (F-v/F-m, measured using pulse amplitude modulated [PAM] fluorometry), an increase in the number of Sytox-green-stained algae (indicating compromised algal membrane integrity and cell death), an increase in 2',7'-dichlorodihydrofluroscein diacetate (H(2)DCFDA)stained algae (indicating increased oxidative stress), as well as ultrastructural changes (vacuolisation, losses of chlorophyll, and an increase in accumulation bodies). Algae expelled from S. pistillata exhibited a complete disorganisation of cellular contents; expelled cells contained only amorphous material. In situ samples taken during a natural mass coral bleaching event on the Great Barrier Reef in February 2002 also revealed a high number of Sytox-labelled algae cells in symbio. Dinoflagellate degeneration during bleaching seems to be similar to the changes resulting from senescence-phase cell death in cultured algae. These data support a role for oxidative stress in the mechanism of coral bleaching and highlight the importance of algal degeneration during the bleaching of a reef coral.
Resumo:
Despite the importance of peritubular myoid (PM) cells in the histogenesis of the fetal testis, understanding the origin and function of these cells has been hampered by the lack of suitable markers. The current study was aimed at identifying molecular markers for PM cells during the early stages of testis development in the mouse embryo. Expression of candidate marker genes was tested by section in situ hybridisation, in some instances followed by immunofluorescent detection of protein products. Collagen type-1, inhibin beta A, caldesmon 1 and tropomyosin 1 were found to be expressed by early-stage PM cells. These markers were also expressed in subsets of interstitial cells, most likely reflecting their common embryological provenance from migrating mesonephric cells. Although not strictly specific for PM cells, these markers are likely to be useful in studying the biology of early PM cells in the fetal testis.