994 resultados para Scheduling models
Resumo:
Evidence from animal models of anxiety has led to the hypothesis that serotonin enhances inhibitory avoidance (related to anxiety) in the forebrain, but inhibits one-way escape (panic) in the midbrain periaqueductal gray (PAG). Stressing the difference between these emotions, neuroendocrinological results indicate that the hypothalamic-pituitary-adrenal axis is activated by anticipatory anxiety, but not by panic attack nor by electrical stimulation of the rat PAG. Functional neuroimaging has shown activation of the insula and upper brain stem (including PAG), as well as deactivation of the anterior cingulated cortex (ACC) during experimental panic attacks. Voxel-based morphometric analysis of brain magnetic resonance images has shown a grey matter volume increase in the insula and upper brain stem, and a decrease in the ACC of panic patients at rest, as compared to healthy controls. The insula and the ACC detect interoceptive stimuli, which are overestimated by panic patients. It is suggested that these brain areas and the PAG are involved in the pathophysiology of panic disorder. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Humans and mice with loss-of-function mutations of the genes encoding kisspeptins (Kiss1) or kisspeptin receptor (Kiss1r) are infertile due to hypogonadotropic hypogonadism. Within the hypothalamus, Kiss1 mRNA is expressed in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (Arc). In order to better study the different populations of kisspeptin cells we generated Kiss1-Cre transgenic mice. We obtained one line with Cre activity specifically within Kiss1 neurons (line J2-4), as assessed by generating mice with Cre-dependent expression of green fluorescent protein or beta-galactosidase. Also, we demonstrated Kiss1 expression in the cerebral cortex and confirmed previous data showing Kiss1 mRNA in the medial nucleus of amygdala and anterodorsal preoptic nucleus. Kiss1 neurons were more concentrated towards the caudal levels of the Arc and higher leptin-responsivity was observed in the most caudal population of Arc Kiss1 neurons. No evidence for direct action of leptin in AVPV Kiss1 neurons was observed. Me lanocortin fibers innervated subsets of Kiss1 neurons of the preoptic area and Arc, and both populations expressed melanocortin receptors type 4 (MC4R). Specifically in the preoptic area, 18-28% of Kiss1 neurons expressed MC4R. In the Arc, 90% of Kiss1 neurons were glutamatergic, 50% of which also were GABAergic. In the AVPV, 20% of Kiss1 neurons were glutamatergic whereas 75% were GABAergic. The differences observed between the Kiss1 neurons in the preoptic area and the Arc likely represent neuronal evidence for their differential roles in metabolism and reproduction. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aim of the present study was to investigate the neuroprotective effect of dental pulp cells (DPCs) in in vitro models of Alzheimer and Parkinson disease. Primary cultures of hippocampal and ventral mesencephalic neurons were treated for 24 h with amyloid beta (A beta(1-42)) peptide 1-42 and 6-OHDA, respectively. DPCs isolated from adult rat incisors were previously cultured in tissue culture inserts and added to the neuron cultures 2 days prior to neurotoxin treatment. Cell viability was assessed by the MTT assay. The co-culture with DPCs significantly attenuated 6-OHDA and A beta(1-42)-induced toxicity in primary cultures of mesencephalic and hippocampal neurons, and lead to an increase in neuronal viability in untreated cultures, suggesting a neurotrophic effect in both models. Furthermore, human dental pulp cells expressed a neuronal phenotype and produced the neurotrophic factors NGF, GDNF, BDNF, and BMP2 shown by microarray screening and antibody staining for the representative proteins. DPCs protected primary neurons in in vitro models of Alzheimer`s and Parkinson`s disease and can be viewed as possible candidates for studies on cell-based therapy.
Resumo:
Finite element analysis (FEA) utilizing models with different levels of complexity are found in the literature to study the tendency to vertical root fracture caused by post intrusion (""wedge effect""). The objective of this investigation was to verify if some simplifications used in bi-dimensional FEA models are acceptable regarding the analysis of stresses caused by wedge effect. Three plane strain (PS) and two axisymmtric (Axi) models were studied. One PS model represented the apical third of the root entirely, in dentin (PS-nG). The other models included gutta-percha in the apical third, and differed regarding dentin-post relationship: bonded (PS-B and Axi-B) or nonbonded (PS-nB and Axi-nB). Mesh discretization and material properties were similar for all cases. Maximum principal stress (sigma(max)) was analyzed as a response to a 165 N longitudinal load. Stress magnitude and orientation varied widely (PS-nG: 10.3 MPa; PS-B: 0.8 MPa; PS-nB: 10.4 MPa; Axi-13: 0.2 MPa, Axi-nB: 10.8 MPa). Axi-nB was the only model where all (sigma(max) vectors at the apical third were perpendicular to the model plane. Therefore, it is adequate to demonstrate the tendency to vertical root fractures caused by wedge effect. Axi-13 showed only part of the (sigma(max) perpendicular to the model plane while PS models showed sigma(max) on the model plane. In these models, sigma(max) orientation did not represent a situation where vertical root fracture would occur due to wedge effect. Adhesion between post and dentin significantly reduced (c) 2007 Wiley Periodicals, Inc.
Resumo:
Integrable extended Hubbard models arising from symmetric group solutions are examined in the framework of the graded quantum inverse scattering method. The Bethe ansatz equations for all these models are derived by using the algebraic Bethe ansatz method.
Resumo:
Three kinds of integrable Kondo impurity additions to one-dimensional q-deformed extended Hubbard models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realisations of the reflection equation algebras in an impurity Hilbert space. The models are solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.
Resumo:
Numerical optimisation methods are being more commonly applied to agricultural systems models, to identify the most profitable management strategies. The available optimisation algorithms are reviewed and compared, with literature and our studies identifying evolutionary algorithms (including genetic algorithms) as superior in this regard to simulated annealing, tabu search, hill-climbing, and direct-search methods. Results of a complex beef property optimisation, using a real-value genetic algorithm, are presented. The relative contributions of the range of operational options and parameters of this method are discussed, and general recommendations listed to assist practitioners applying evolutionary algorithms to the solution of agricultural systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Many studies have shown that deficits in olfactory and cognitive functions precede the classical motor symptoms seen in Parkinson`s disease (PD) and that olfactory testing may contribute to the early diagnosis of this disorder. Although the primary cause of PD is still unknown, epidemiological studies have revealed that its incidence is increased in consequence of exposure to certain environmental toxins. In this study, most of the impairments presented by C57BL/6 mice infused with a single intranasal (i.n.) administration of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (1 mg/nostril) were similar to those observed during the early phase of PD, when a moderate loss of nigral dopamine neurons results in olfactory and memory deficits with no major motor impairments. Such infusion decreased the levels of the enzyme tyrosine hydroxylase in the olfactory bulb, striatum, and substantia nigra by means of apoptotic mechanisms, reducing dopamine concentration in different brain structures such as olfactory bulb, striatum, and prefrontal cortex, but not in the hippocampus. These findings reinforce the notion that the olfactory system represents a particularly sensitive route for the transport of neurotoxins into the central nervous system that may be related to the etiology of PD. These results also provide new insights in experimental models of PD, indicating that the i.n. administration of MPTP represents a valuable mouse model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.