988 resultados para Scale Climate Variability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We suggest that climate variability in Europe for the “pre-industrial” period 1500–1900 is fundamentally a consequence of internal fluctuations of the climate system. This is because a model simulation, using fixed pre-industrial forcing, in several important aspects is consistent with recent observational reconstructions at high temporal resolution. This includes extreme warm and cold seasonal events as well as different measures of the decadal to multi-decadal variance. Significant trends of 50-year duration can be seen in the model simulation. While the global temperature is highly correlated with ENSO (El Nino- Southern Oscillation), European seasonal temperature is only weakly correlated with the global temperature broadly consistent with data from ERA-40 reanalyses. Seasonal temperature anomalies of the European land area are largely controlled by the position of the North Atlantic storm tracks. We believe the result is highly relevant for the interpretation of past observational records suggesting that the effect of external forcing appears to be of secondary importance. That variations in the solar irradiation could have been a credible cause of climate variations during the last centuries, as suggested in some previous studies, is presumably due to the fact that the models used in these studies may have underestimated the internal variability of the climate. The general interpretation from this study is that the past climate is just one of many possible realizations and thus in many respects not reproducible in its time evolution with a general circulation model but only reproducible in a statistical sense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally agreed that changing climate variability, and the associated change in climate extremes, may have a greater impact on environmentally vulnerable regions than a changing mean. This research investigates rainfall variability, rainfall extremes, and their associations with atmospheric and oceanic circulations over southern Africa, a region that is considered particularly vulnerable to extreme events because of numerous environmental, social, and economic pressures. Because rainfall variability is a function of scale, high-resolution data are needed to identify extreme events. Thus, this research uses remotely sensed rainfall data and climate model experiments at high spatial and temporal resolution, with the overall aim being to investigate the ways in which sea surface temperature (SST) anomalies influence rainfall extremes over southern Africa. Extreme rainfall identification is achieved by the high-resolution microwave/infrared rainfall algorithm dataset. This comprises satellite-derived daily rainfall from 1993 to 2002 and covers southern Africa at a spatial resolution of 0.1° latitude–longitude. Extremes are extracted and used with reanalysis data to study possible circulation anomalies associated with extreme rainfall. Anomalously cold SSTs in the central South Atlantic and warm SSTs off the coast of southwestern Africa seem to be statistically related to rainfall extremes. Further, through a number of idealized climate model experiments, it would appear that both decreasing SSTs in the central South Atlantic and increasing SSTs off the coast of southwestern Africa lead to a demonstrable increase in daily rainfall and rainfall extremes over southern Africa, via local effects such as increased convection and remote effects such as an adjustment of the Walker-type circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and health modeling. Methods used to bridge the scale gap between climate and crop models are reviewed. Recent advances include large-area crop modeling, quantification of uncertainty in crop yield, and fully integrated crop–climate modeling. The implications of trends in computer power, including supercomputers, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct observations from an array of current meter moorings across the Mozambique Channel in the south-west Indian Ocean are presented covering a period of more than 4 years. This allows an analysis of the volume transport through the channel, including the variability on interannual and seasonal time scales. The mean volume transport over the entire observational period is 16.7 Sv poleward. Seasonal variations have a magnitude of 4.1 Sv and can be explained from the variability in the wind field over the western part of the Indian Ocean. Interannual variability has a magnitude of 8.9 Sv and is large compared to the mean. This time scale of variability could be related to variability in the Indian Ocean Dipole (IOD), showing that it forms part of the variability in the ocean-climate system of the entire Indian Ocean. By modulating the strength of the South Equatorial Current, the weakening (strengthening) tropical gyre circulation during a period of positive (negative) IOD index leads to a weakened (strengthened) southward transport through the channel, with a time lag of about a year. The relatively strong interannual variability stresses the importance of long-term direct observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A connection is shown to exist between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993–2003. The SSH-fields in the Mozambique Channel and east of Madagascar exhibit a significant interannual oscillation. This is related to the arrival of large-scale anomalies that propagate westward along 10°–15°S in response to the Indian Ocean dipole (IOD) events. Positive (negative) SSH anomalies associated to a positive (negative) IOD phase induce a shift in the intensity and position of the tropical and subtropical gyres. A weakening (strengthening) results in the intensity of the South Equatorial Current and its branches along east Madagascar. In addition, the flow through the narrows of the Mozambique Channel around 17°S increases (decreases) during periods of a stronger and northward (southward) extension of the subtropical (tropical) gyre. Interaction between the currents in the narrows and southward propagating eddies from the northern Channel leads to interannual variability in the eddy kinetic energy of the central Channel in phase with the one in the SSH-field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent changes in climate have had a measurable impact on crop yield in China. The objective of this study is to investigate how climate variability affects wheat yield in China at different spatial scales. First the response of wheat yield to the climate at the provincial level from 1978 to 1995 for China was analysed. Wheat yield variability was only correlated with climate variability in some regions of China. At the provincial level, the variability of precipitation had a negative impact on wheat yield in parts of southeast China, but the seasonal mean temperature had a negative impact on wheat yield in only a few provinces, where significant variability in precipitation explained about 23–60% of yield variability, and temperature variability accounted for 37–41% of yield variability from 1978 to 1995. The correlation between wheat yield and climate for the whole of China from 1985 to 2000 was investigated at five spatial scales using climate data. The Climate Research Unit (CRU) and National Centers for Environmental Prediction (NCEP) proportions of the grid cells with a significant yield–precipitation correlation declined progressively from 14.6% at 0.5° to 0% at 5° scale. In contrast, the proportion of grid cells significant for the yield–temperature correlation increased progressively from 1.9% at 0.5° scale to 16% at 5° scale. This indicates that the variability of precipitation has a higher association with wheat yield at small scales (0.5°, 2°/2.5°) than at larger scales (4°/5.0°); but wheat yield has a good association with temperature at all levels of aggregation. The precipitation variable at the smaller scales (0.5°, 2°/2.5°) is a dominant factor in determining inter-annual wheat yield variability more so than at the larger scales (4°/5°). We conclude that in the current climate the relationship between wheat yield and each of precipitation and temperature becomes weaker and stronger, respectively, with an increase in spatial scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low variability of crop production from year to year is desirable for many reasons, including reduced income risk and stability of supplies. Therefore, it is important to understand the nature of yield variability, whether it is changing through time, and how it varies between crops and regions. Previous studies have shown that national crop yield variability has changed in the past, with the direction and magnitude dependent on crop type and location. Whilst such studies acknowledge the importance of climate variability in determining yield variability, it has been assumed that its magnitude and its effect on crop production have not changed through time and, hence, that changes to yield variability have been due to non-climatic factors. We address this assumption by jointly examining yield and climate variability for three major crops (rice, wheat and maize) over the past 50 years. National yield time series and growing season temperature and precipitation were de-trended and related using multiple linear regression. Yield variability changed significantly in half of the crop–country combinations examined. For several crop–country combinations, changes in yield variability were related to changes in climate variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is large uncertainty about the magnitude of warming and how rainfall patterns will change in response to any given scenario of future changes in atmospheric composition and land use. The models used for future climate projections were developed and calibrated using climate observations from the past 40 years. The geologic record of environmental responses to climate changes provides a unique opportunity to test model performance outside this limited climate range. Evaluation of model simulations against palaeodata shows that models reproduce the direction and large-scale patterns of past changes in climate, but tend to underestimate the magnitude of regional changes. As part of the effort to reduce model-related uncertainty and produce more reliable estimates of twenty-first century climate, the Palaeoclimate Modelling Intercomparison Project is systematically applying palaeoevaluation techniques to simulations of the past run with the models used to make future projections. This evaluation will provide assessments of model performance, including whether a model is sufficiently sensitive to changes in atmospheric composition, as well as providing estimates of the strength of biosphere and other feedbacks that could amplify the model response to these changes and modify the characteristics of climate variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precipitation indices are commonly used as climate change indicators. Considering four Climate Variability and Predictability-recommended indices, this study assesses possible changes in their spatial patterns over Portugal under future climatic conditions. Precipitation data from the regional climate model Consortium for Small-Scale Modelling–Climate version of the Local Model (CCLM) ensemble simulations with ECHAM5/MPI-OM1 boundary conditions are used for this purpose. For recent–past, medians and probability density functions of the CCLM-based indices are validated against station-based and gridded observational dataset from ENSEMBLES-based (gridded daily precipitation data provided by the European Climate Assessment & Dataset project) indices. It is demonstrated that the model is able to realistically reproduce not only precipitation but also the corresponding extreme indices. Climate change projections for 2071–2100 (A1B and B1 SRES scenarios) reveal significant decreases in total precipitation, particularly in autumn over northwestern and southern Portugal, though changes exhibit distinct local and seasonal patterns and are typically stronger for A1B than for B1. The increase in winter precipitation over northeastern Portugal in A1B is the most important exception to the overall drying trend. Contributions of extreme precipitation events to total precipitation are also expected to increase, mainly in winter and spring over northeastern Portugal. Strong projected increases in the dry spell lengths in autumn and spring are also noteworthy, giving evidence for an extension of the dry season from summer to spring and autumn. Although no coupling analysis is undertaken, these changes are qualitatively related to modifications in the large-scale circulation over the Euro-Atlantic area, more specifically to shifts in the position of the Azores High and associated changes in the large-scale pressure gradient over the area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interpretation of ice-core records is currently limited by paucity of modelling at adequate temporal and spatial resolutions. Several key questions relate to mechanisms of polar amplification and inter-hemispheric coupling on glacial/interglacial timescales. Here, we present the first results from a large set of global ocean–atmosphere climate model ‘snap-shot’ simulations covering the last 120 000 years using the Hadley Centre climate model (HadCM3) at up to 1 kyr temporal resolution. Two sets of simulations were performed in order to examine the roles of orbit and greenhouse gases versus ice-sheet forcing of orbital-scale climate change. A series of idealised Heinrich events were also simulated, but no changes to aerosols or vegetation were prescribed. This paper focuses on high latitudes and inter-hemispheric linkages. The simulations reproduce polar temperature trends well compared to ice-core reconstructions, although the magnitude is underestimated. Polar amplification varies with obliquity, but this variability is dampened by including variations in land ice coverage, while the overall amplification factor increases. The relatively constant amplification of Antarctic temperatures (with ice-sheet forcing included) suggests it is possible to use Antarctic temperature reconstructions to estimate global changes (which are roughly half the magnitude). Atlantic Ocean overturning circulation varies considerably only with the introduction of Northern Hemisphere ice sheets, but only weakens in the North Atlantic in the deep glacial, when ocean–sea-ice feedbacks result in the movement of the region of deep convection to lower latitudes and with the introduction of freshwater to the surface North Atlantic in order to simulate Heinrich events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis). Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the North Pacific area into the coupled system drastically changes the Arctic climate variability to a point where the Arctic Oscillation becomes an ‘internal mode’ of variability and correlations of year-to-year variability with observational data vanish. In line with previous studies, our simulations provide evidence that Arctic sea ice export is mainly due to ‘internal variability’ within the Arctic region. We conclude that the choice of model domains should be based on physical knowledge of the atmospheric and oceanic processes and not on ‘geographic’ reasons. This is particularly the case for areas like the Arctic, which has very complex feedbacks between components of the regional climate system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study evaluated the effects of climate variability on maize (Zea mays L.) yield in Sri Lanka at different spatial scales. Biophysical data from the Department of Agriculture (DOA) in Sri Lanka for six major maize-growing districts (Ampara, Anuradhapura, Badulla, Hambantota, Moneragala, and Kurunegala) from 1990 to 2010 were analyzed. Simple linear regression models were fitted to observed climate data and detrended maize yield to identify significant correlations. The correlation between first differences of maize yield and climate (r) was further investigated at 0.50° grid scale using interpolated climate data. After 2003, significantly positive (p < 0.01) yield trends varied from 154 kg ha–1 yr–1 to 360 kg ha–1 yr–1. The correlations between maize yield and climate reported that five out of six districts were significant at 10% level. Rainfall had a consistent significant (p < 0.10) positive impact on maize yield in Anuradhapura, Hambantota, and Moneragala, where seasonal total rainfall together with high temperature (“hot-dry”) are the key limitations. Further, the seasonal mean temperature had a negative impact on maize yield in Moneragala (“hot-dry”), the only district that showed high temperatures. Badulla district (“cold-dry”) reported a significant (r = 0.38) positive correlation with mean seasonal temperature, indicating higher potential toward increasing temperatures. Each 1°C rise in seasonal mean temperature reduced maize yield by about 5% from 1990 to 2010. Overall, there was a reasonable correlation between district maize yield and seasonal climate in most of the districts within the maize belt of Sri Lanka.