221 resultados para SYNGAS
Resumo:
Computational Fluid Dynamics (CFD) has found great acceptance among the engineering community as a tool for research and design of processes that are practically difficult or expensive to study experimentally. One of these processes is the biomass gasification in a Circulating Fluidized Bed (CFB). Biomass gasification is the thermo-chemical conversion of biomass at a high temperature and a controlled oxygen amount into fuel gas, also sometime referred to as syngas. Circulating fluidized bed is a type of reactor in which it is possible to maintain a stable and continuous circulation of solids in a gas-solid system. The main objectives of this thesis are four folds: (i) Develop a three-dimensional predictive model of biomass gasification in a CFB riser using advanced Computational Fluid Dynamic (CFD) (ii) Experimentally validate the developed hydrodynamic model using conventional and advanced measuring techniques (iii) Study the complex hydrodynamics, heat transfer and reaction kinetics through modelling and simulation (iv) Study the CFB gasifier performance through parametric analysis and identify the optimum operating condition to maximize the product gas quality. Two different and complimentary experimental techniques were used to validate the hydrodynamic model, namely pressure measurement and particle tracking. The pressure measurement is a very common and widely used technique in fluidized bed studies, while, particle tracking using PEPT, which was originally developed for medical imaging, is a relatively new technique in the engineering field. It is relatively expensive and only available at few research centres around the world. This study started with a simple poly-dispersed single solid phase then moved to binary solid phases. The single solid phase was used for primary validations and eliminating unnecessary options and steps in building the hydrodynamic model. Then the outcomes from the primary validations were applied to the secondary validations of the binary mixture to avoid time consuming computations. Studies on binary solid mixture hydrodynamics is rarely reported in the literature. In this study the binary solid mixture was modelled and validated using experimental data from the both techniques mentioned above. Good agreement was achieved with the both techniques. According to the general gasification steps the developed model has been separated into three main gasification stages; drying, devolatilization and tar cracking, and partial combustion and gasification. The drying was modelled as a mass transfer from the solid phase to the gas phase. The devolatilization and tar cracking model consist of two steps; the devolatilization of the biomass which is used as a single reaction to generate the biomass gases from the volatile materials and tar cracking. The latter is also modelled as one reaction to generate gases with fixed mass fractions. The first reaction was classified as a heterogeneous reaction while the second reaction was classified as homogenous reaction. The partial combustion and gasification model consisted of carbon combustion reactions and carbon and gas phase reactions. The partial combustion considered was for C, CO, H2 and CH4. The carbon gasification reactions used in this study is the Boudouard reaction with CO2, the reaction with H2O and Methanation (Methane forming reaction) reaction to generate methane. The other gas phase reactions considered in this study are the water gas shift reaction, which is modelled as a reversible reaction and the methane steam reforming reaction. The developed gasification model was validated using different experimental data from the literature and for a wide range of operating conditions. Good agreement was observed, thus confirming the capability of the model in predicting biomass gasification in a CFB to a great accuracy. The developed model has been successfully used to carry out sensitivity and parametric analysis. The sensitivity analysis included: study of the effect of inclusion of various combustion reaction; and the effect of radiation in the gasification reaction. The developed model was also used to carry out parametric analysis by changing the following gasifier operating conditions: fuel/air ratio; biomass flow rates; sand (heat carrier) temperatures; sand flow rates; sand and biomass particle sizes; gasifying agent (pure air or pure steam); pyrolysis models used; steam/biomass ratio. Finally, based on these parametric and sensitivity analysis a final model was recommended for the simulation of biomass gasification in a CFB riser.
Resumo:
Spark-ignited (SI) gas engines are for the use of fuel gas only and are limited to the flammable range of the gas; this means the range of a concentration of a gas or vapor that will burn after ignition. Fuel gas like syngas from gasification or biogas must meet high quality and chemical purity standards for combustion in SI gas engines. Considerable effort has been devoted to fast pyrolysis over the years and some of the product oils have been tested in diesel or dual-fuel engines since 1993. For biogas conversion, usually dual-fuel engines are used, while for synthesis gas the use of gas engines is more common. The trials using wood derived pyrolysis oil from fast pyrolysis have not yet been a success story and these approaches have usually failed due to the high corrosivity of the pyrolysis oils.
Resumo:
Gas-to-liquid processes are generally used to convert natural gas or other gaseous hydrocarbons into liquid fuels via an intermediate syngas stream. This includes the production of liquid fuels from biomass-derived sources such as biogas. For example, the dry reforming of methane is done by reacting CH4 and CO2, the two main components of natural biogas, into more valuable products, i.e., CO and H2. Nickel containing perovskite type catalysts can promote this reaction, yielding good conversions and selectivities; however, they are prone to coke laydown under certain operating conditions. We investigated the addition of high oxygen mobility dopants such as CeO2, ZrO2, or YSZ to reduce carbon laydown, particularly using reaction conditions that normally result in rapid coking. While doping with YSZ, YDC, GDC, and SDC did not result in any improvement, we show that a Ni perovskite catalyst (Na0.5La0.5Ni0.3Al0.7O2.5) doped with 80.9 ZrO2 15.2 CeO2 gave the lowest amount of carbon formation at 800 °C and activity was maintained over the operating time.
Resumo:
As the largest contributor to renewable energy, biomass (especially lignocellulosic biomass) has significant potential to address atmospheric emission and energy shortage issues. The bio-fuels derived from lignocellulosic biomass are popularly referred to as second-generation bio-fuels. To date, several thermochemical conversion pathways for the production of second-generation bio-fuels have shown commercial promise; however, most of these remain at various pre-commercial stages. In view of their imminent commercialization, it is important to conduct a profound and comprehensive comparison of these production techniques. Accordingly, the scope of this review is to fill this essential knowledge gap by mapping the entire value chain of second-generation bio-fuels, from technical, economic, and environmental perspectives. This value chain covers i) the thermochemical technologies used to convert solid biomass feedstock into easier-to-handle intermediates, such as bio-oil, syngas, methanol, and Fischer-Tropsch fuel; and ii) the upgrading technologies used to convert intermediates into end products, including diesel, gasoline, renewable jet fuels, hydrogen, char, olefins, and oxygenated compounds. This review also provides an economic and commercial assessment of these technologies, with the aim of identifying the most adaptable technology for the production of bio-fuels, fuel additives, and bio-chemicals. A detailed mapping of the carbon footprints of the various thermochemical routes to second-generation bio-fuels is also carried out. The review concludes by identifying key challenges and future trends for second-generation petroleum substitute bio-fuels.
Resumo:
Following work exploring the low temperature electrolysis in alkaline media, using graphite consumable anodes, from which syngas was obtained1, laboratory studies have been conducted in acid media pursuing higher efficiency in the production of hydrogen and synthetic fuels. Experiments were conducted in an own designed undivided planar cell with 25 cm2 geometrical area electrodes using a 0.5 M H2SO4 solution with and without Fe(II) additions. Fe2+ oxidizes to Fe3+ at the anode surface. The redox couple Fe3+/ Fe2+ acts as an oxidation mediator not only oxidizing the bulk and detached graphite but also the surface functional groups. The practical experimental potential for graphite oxidation is within the range for the electroxidation of the Fe redox couple giving as a result a 4-fold increase in the amount of produced CO2 at near room temperature, when using 0.025 M FeSO4.
Resumo:
Food production account for significant share of global environmental impacts. Impacts are global warming, fresh water use, land use and some non-renewable substance consumption like phosphorous fertilizers. Because of non-sustainable food production, the world is heading to different crises. Both food- and freshwater crises and also land area and phosphorous fertilizer shortages are one of many challenges to overcome in near future. The major protein sources production amounts, their impacts on environment and uses are show in this thesis. In this thesis, a more sustainable than conventional way of biomass production for food use is introduced. These alternative production methods are photobioreactor process and syngas-based bioreactor process. The processes’ energy consumption and major inputs are viewed. Their environmental impacts are estimated. These estimations are the compared to conventional protein production’s impacts. The outcome of the research is that, the alternative methods can be more sustainable solutions for food production than conventional production. However, more research is needed to verify the exact impacts. Photobioreactor is more sustainable process than syngas-based bioreactor process, but it is more location depended and uses more land area than syngas-based process. In addition, the technology behind syngas-based application is still developing and it can be more efficient in the future.
Resumo:
As metas da União Europeia para 2020 em termos de biocombustíveis e biolíquidos traduziram-se, na última década, num destaque da indústria de biodiesel em Portugal. Inerente ao processo de produção biodiesel está um subproduto, o glicerol bruto, cujo estudo tem vindo a ser alvo de interesse na comunidade científica. O objetivo principal deste trabalho consistiu no estudo da gasificação do glicerol técnico e do glicerol bruto, usando vapor como agente oxidante. Pretendeu-se avaliar a composição do gás de produção obtido e os parâmetros de gasificação, como a percentagem de conversão de carbono e de hidrogénio, o rendimento de gás seco, a eficiência de gás frio e o poder calorífico do gás produzido. No estudo da gasificação do glicerol técnico avaliou-se o efeito da temperatura na performance do processo, entre 750 – 1000 ºC, e estudou-se ainda o efeito do caudal de alimentação ao reator (3,8 mL/min, 6,5 mL/min e 10,0 mL/min). Para o caudal mais baixo, estudou-se o efeito da razão de mistura glicerol/água (25/75, 40/60, 60/40 e 75/25) e para a razão de mistura 60/40 foi avaliada a influência da adição de ar como agente gasificante. O estudo da gasificação do glicerol bruto foi feito realizando ensaios de gasificação numa gama de temperaturas de 750 ºC a 1000 ºC, para uma razão de mistura glicerol/água (60/40) com o caudal de 3,8 mL/min e usando apenas vapor de água como agente de gasificação. Os ensaios foram realizados num reator de leito fixo de 500 mm de comprimento e 90 mm de diâmetro interno, composto por um leito de alumina com partículas de 5 mm de diâmetro. O aquecimento foi realizado com um forno elétrico de 4 kW. A amostra de gás de produção recolhida foi analisada por cromatografia gasosa com detector de termocondutividade. Os resultados obtidos na gasificação do glicerol técnico, revelaram que a temperatura é uma variável preponderante no desempenho do processo de gasificação. À exceção do poder calorífico superior, para o qual se obteve uma ligeira diminuição de valores com o aumento da temperatura, os valores mais elevados dos parâmetros de gasificação foram obtidos para temperaturas superiores a 900 ºC. Esta temperatura parece ser determinante no modelo cinético de gasificação do glicerol, condicionando a composição do gás de produção obtido. Concluiu-se ainda que, na gama de caudais testada, o caudal de alimentação ao reator não teve influência no processo de gasificação. Os ensaios realizados para avaliar o efeito da razão de mistura permitiram verificar que, o aumento da adição de água à alimentação se traduz na redução do teor de CO e de CH4 e no aumento do teor de H2 e CO2, no gás de produção. Para a razão de mistura 25/75 foram obtidos valores de 1,3 para o rácio H2/CO para temperaturas superiores a 900 ºC. A influência da adição de água tornou-se mais evidente nos ensaios de gasificação realizados a temperaturas superiores a 900 ºC. Verificou-se um aumento da conversão de carbono, do rendimento de gás seco e da eficiência do gás frio e uma ligeira diminuição do poder calorífico e da potência disponível, no gás de produção. Para as razões de misturas 60/40 e 40/60 obtiveram-se resultados, para os parâmetros de gasificação, da mesma ordem de grandeza e com valores intermédios entre os obtidos para as razões de mistura 25/75 e 75/25. Porém, quanto maior o teor de água alimentado maior o consumo de energia associado à vaporização da água. Assim, o aumento do teor de água na mistura só apresentará interesse industrial se o objetivo passar pela produção de hidrogénio. Quanto ao efeito da adição de ar como agente de gasificação, os resultados obtidos dão indicação que se poderão potenciar algumas reações exotérmicas que contribuirão para a redução do consumo energético global do processo. Por outro lado, o gás de produção apresentou um rácio H2/CO interessante do ponto de vista da sua aplicação industrial, superior em 35 % ao verificado para a gasificação efetuada apenas na presença de vapor. À exceção do decréscimo no valor do poder calorífico superior do gás de produção, os restantes parâmetros estudados apresentaram a mesma ordem de grandeza, dos obtidos para o estudo da mesma razão de mistura na ausência de ar. Relativamente ao estudo da gasificação do glicerol bruto, obtiveram-se valores de rácio H2/CO e eficiência de gás frio mais elevados que os valores obtidos para a mesma razão de mistura usando glicerol técnico. Os demais parâmetros de gasificação avaliados mostraram-se semelhantes entre as duas matérias-primas, verificando-se apenas uma ligeira diminuição no valor do poder calorífico superior do gás produzido com glicerol bruto. Os resultados obtidos demonstram a possibilidade de valorização energética do glicerol bruto resultante da produção de biodiesel.
Resumo:
The growing concern about the depletion of oil has spurred worldwide interest in finding alternative feedstocks for important petrochemical commodities and fuels. On the one hand, the enormous re-serves found (208 trillion cubic feet proven1), environmental sustainability and lower overall costs point to natural gas as the primary source for energy and chemicals in the near future.2 Nowadays the transformation of methane into useful chemicals and liquid fuels is only feasible via synthesis gas, a mixture of molecular hydrogen and carbon monoxide, that is further transformed to methanol or to hydrocarbons under moderate reaction conditions (150-350 °C and 10-100 bar).3 For a major cost reduction and in order to valorize small natural gas sources, either more efficient "syngas to products" catalysts should be produced or the manner in which methane is initially activated should be changed, ideally by developing catalysts able to directly oxidize methane to interesting products such as methanol. On the other hand, from the point of view of CO2 emissions, the use of the re-maining fossil resources will further contribute to global warming. In this scenario, the development of efficient routes for the transformation of CO2 into useful chemicals and fuels would represent a considerable step forward towards sustainability. Indeed, the environmental and economic incen-tives to develop processes for the conversion of CO2 into fuels and chemicals are great. However, for such conversions to become economically feasible, considerable research is necessary. In this lecture we will summarize our recent efforts into the design of new catalytic systems, based on MOFs and COFs, to address these challenges. Examples include the development of new Fe based FTS catalysts, electrocatalysts for the selective conversion of CO2 into syngas, the development of efficient catalysts for the utilization of formic acid as hydrogen storage vector and the development of new enzyme inspired systems for the direct transformation of methane to methanol under mild reaction conditions. References (1) http://www.clearonmoney.com/dw/doku.php?id=public:natural_gas_reserves. (2) Derouane, E. G.; Parmon, V.; Lemos, F.; Ribeiro, F. R. Sustainable Strategies for the Up-grading of Natural Gas: Fundamentals, Challenges, and Opportunities; Springer, 2005. (3) Rofer-DePoorter, C. K. Chemical Reviews. ACS Publications 1981, pp 447–474.
Resumo:
In this work, ceramic powders belonging to the system Nd2-xSrxNiO4 (x = 0, 0.4, 0.8, 1.2 and 1.6) were synthesized for their use as catalysts to syngas production partial. It was used a synthesis route, relatively new, which makes use of gelatin as organic precursor. The powders were analyzed at several temperatures in order to obtain the perovskite phase and characterized by several techniques such as thermal analysis, X-rays diffraction, Rietveld refinement method, specific surface area, scanning electron microscopy, energy dispersive spectroscopy of X-rays and temperature programmed reduction. The results obtained using these techniques confirmed the feasibility of the synthesis method employed to obtain nanosized particles. The powders were tested in differential catalytic conditions for dry reforming of methane (DRM) and partial oxidation of methane (POM), then, some systems were chosen for catalytic integrals test for (POM) indicating that the system Nd2-xSrxNiO4 for x = 0, 0.4 and 1.2 calcined at 900 °C exhibit catalytic activity on the investigated experimental conditions in this work without showing signs of deactivation
Resumo:
Nickel-bases catalysts have been used in several reform reactions, such as in the partial oxidation of methane to obtain H2 or syngas (H2 + CO). High levels of conversion are usually obtained using this family of catalysts, however, their deactivation resulting from carbon deposition still remains a challenge. Different approaches have been tested aiming at minimizing this difficulty, including the production of perovskites and related structures using modern synthesis methods capable of producing low cost materials with controlled microstructural characteristics at industrial scale. To establish grounds for comparison, in the present study LaNixFe1-xO3 (x=0, 0.3 or 0.7) perovskites were prepared following the Pechini method and by microwave assisted self-combustion. All samples were sub sequently calcined at 900 °C to obtain the target phase. The resulting ceramic powders were characterized by thermogravimetric analysis, infrared spectroscopy, X ray diffraction, specific area and temperature programmed reduction tests. Calcined samples were also used in the partial oxidation reaction of methane to evaluate the level of conversion, selectivity and carbon deposition. The results showed that the calcined samples were crystalline and the target phase was formed regardless of the synthesis method. According to results obtained by Rietveld refinement, we observed the formation of 70.0% of LaNi0.3Fe0.7O3 and 30.0% of La2O3 for samples LN3F7-900- P, LN3F7-900-M and 41,6% of LaNi0.7Fe0.3O3, 30.7% of La2NiO4 and 27.7% of La2O3 for samples LN7F3-900-P and LN7F3-900-M.Temperature-programmed profiles of the LaNiO3 sample revealed the presence of a peak around 510 °C, whereas the LaFeO3 sample depicted a peak above 1000°C. The highest l evel of methane conversion was obtained for LaNiO3 synthesized by the Pechini method. Overall, catalysts prepared by the Pechini method depicted better conversion levels compared to those produced by microwave assisted self-combustion
Resumo:
The main objective of this research was to investigate pyrolysis and torrefaction of forest biomass species using a micropyrolysis instrument. It was found that 30-45% of the original sample mass remained as bio-char in the pyrolysis temperature range of 500 - 700˚C for aspen, balsam, and switchgrass. The non-char mass was converted to gaseous and vapor products, of which 10-55% was water and syngas, 2-12% to acetic acid, 2-12% to hydroxypropanone, 1-3% to furaldehyde, and 5-15% to various phenolic compounds. In addition, several general trends in the evolution of gaseous species were indentified when woody feedstocks were pyrolyzed. With increasing temperature it was observed that: (1) the volume of gas produced increased, (2) the volume of CO2 decreased and the volumes of CO and CH4 increased, and (3) the rates of gas evolution increased. In the range of torrefaction temperature (200 - 300˚C), two mechanistic models were developed to predict the rates of CO2 and acetic acid product formation. The models fit the general trend of the experimental data well, but suggestions for future improvement were also noted. Finally, it was observed that using torrefaction as a pre-curser to pyrolysis improves the quality of bio-oil over traditional pyrolysis by reducing the acidity through removal of acetic acid, reducing the O/C ratio by removal of some oxygenated species, and removing a portion of the water.