611 resultados para SYNCHROTRON
Resumo:
Viral capsids derived from an icosahedral plant virus widely used in physical and nanotechnological investigations were fully dissociated into dimers by a rapid change of pH. The process was probed in vitro at high spatiotemporal resolution by time-resolved small-angle X-ray scattering using a high brilliance synchrotron source. A powerful custom-made global fitting algorithm allowed us to reconstruct the most likely pathway parametrized by a set of stoichiometric coefficients and to determine the shape of two successive intermediates by ab initio calculations. None of these two unexpected intermediates was previously identified in self-assembly experiments, which suggests that the disassembly pathway is not a mirror image of the assembly pathway. These findings shed new light on the mechanisms and the reversibility of the assembly/disassembly of natural and synthetic virus-based systems. They also demonstrate that both the structure and dynamics of an increasing number of intermediate species become accessible to experiments.
Resumo:
The electronic structure of the (La0.8Sr0.2)(0.98)Mn1-xCrxO3 model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La, Sr)MnO3 resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L-3-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d-O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t(2g) up arrow state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t(2g) up arrow state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p-Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La, Sr)MnO3 is presented. (C) 2015 AIP Publishing LLC.
Resumo:
The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.
Resumo:
The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.
Resumo:
A comparative study of field-induced domain switching and lattice strain was carried out by in situ electric-field-dependent high-energy synchrotron x-ray diffraction on a morphotropic phase boundary (MPB) and a near-MPB rhombohedral/pseudomonoclinic composition of a high-performance piezoelectric alloy (1-x) PbTiO3-(x)BiScO3. It is demonstrated that the MPB composition showing large d(33) similar to 425 pC/N exhibits significantly reduced propensity of field-induced domain switching as compared to the non-MPB rhombohedral composition (d(33) similar to 260 pC/N). These experimental observations contradict the basic premise of the martensitic-theory-based explanation which emphasizes on enhanced domain wall motion as the primary factor for the anomalous piezoelectric response in MPB piezoelectrics. Our results favor field-induced structural transformation to be the primary mechanism contributing to the large piezoresponse of the critical MPB composition of this system.
Resumo:
Crystallization, melting and structural evolution upon crystallization in Nd60Al10Fe20Co10 bulk metallic glass (BMG) are in situ investigated by x-ray diffraction with synchrotron radiation under high pressure. It is found that the crystallization is pressure promoted, while themelting is inhibited. The crystallization and melting process are also changed under high pressure. The features of the crystallization and melting under high pressure are discussed.
Resumo:
研究了逆流相对论电子与激光脉冲相互作用获得激光同步辐射的频率上移、微分散射截面等特性.发现逆流相对论电子与短脉冲激光相互作用,可以获得阿秒X射线辐射脉冲.短脉冲激光条件下得到的后向散射光的频率上移与长脉冲激光条件下得到的后向散射光的频率上移是完全一致的,同时发现随着入射电子初始能量的增加,散射光的准直性越来越好,后向散射光脉冲的脉宽越来越短.
Resumo:
Blazars are active galaxies with a jet closely oriented to our line of sight. They are powerful, variable emitters from radio to gamma-ray wavelengths. Although the general picture of synchrotron emission at low energies and inverse Compton at high energies is well established, important aspects of blazars are not well understood. In particular, the location of the gamma-ray emission region is not clearly established, with some theories favoring a location close to the central engine, while others place it at parsec scales in the radio jet.
We developed a program to locate the gamma-ray emission site in blazars, through the study of correlated variations between their gamma-ray and radio-wave emission. Correlated variations are expected when there is a relation between emission processes at both bands, while delays tell us about the relative location of their energy generation zones. Monitoring at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope started in mid-2007. The program monitors 1593 blazars twice per week, including all blazars detected by the Fermi Gamma-ray Space Telescope (Fermi) north of -20 degrees declination. This program complements the continuous monitoring of gamma-rays by Fermi.
Three year long gamma-ray light curves for bright Fermi blazars are cross-correlated with four years of radio monitoring. The significance of cross-correlation peaks is investigated using simulations that account for the uneven sampling and noise properties of the light curves, which are modeled as red-noise processes with a simple power-law power spectral density. We found that out of 86 sources with high quality data, only three show significant correlations (AO 0235+164, B2 2308+34 and PKS 1502+106). Additionally, we find a significant correlation for Mrk 421 when including the strong gamma-ray/radio flare of late 2012. In all four cases radio variations lag gamma-ray variations, suggesting that the gamma-ray emission originates upstream of the radio emission. For PKS 1502+106 we locate the gamma-ray emission site parsecs away from the central engine, thus disfavoring the model of Blandford and Levinson (1995), while other cases are inconclusive. These findings show that continuous monitoring over long time periods is required to understand the cross-correlation between gamma-ray and radio-wave variability in most blazars.
Resumo:
Observational and theoretical work towards the separation of foreground emission from the cosmic microwave background is described. The bulk of this work is in the design, construction, and commissioning of the C-Band All-Sky Survey (C-BASS), an experiment to produce a template of the Milky Way Galaxy's polarized synchrotron emission. Theoretical work is the derivation of an analytical approximation to the emission spectrum of spinning dust grains.
The performance of the C-BASS experiment is demonstrated through a preliminary, deep survey of the North Celestial Pole region. A comparison to multiwavelength data is performed, and the thermal and systematic noise properties of the experiment are explored. The systematic noise has been minimized through careful data processing algorithms, implemented both in the experiment's Field Programmable Gate Array (FPGA) based digital backend and in the data analysis pipeline. Detailed descriptions of these algorithms are presented.
The analytical function of spinning dust emission is derived through the application of careful approximations, with each step tested against numerical calculations. This work is intended for use in the parameterized separation of cosmological foreground components and as a framework for interpreting and comparing the variety of anomalous microwave emission observations.
Resumo:
介绍了硬X射线(类同轴)相位衬度成像的工作原理及其实验研究结果。X射线波长为0.08860nm,样品为未经任何处理的飞蛾,记录介质为X射线胶片。胶片经处理以后,用光学显微镜读出,可以看出样品的许多细节,尤其在折射率突变处。而同样条件下基于吸收衬度机制的硬X射线吸收成像,由于是弱吸收样品.没有观察到任何图像。
Resumo:
Linear Thomson scattering by a relativistic electron of a short pulse laser has been investigated by computer simulation. Under a laser field with a pulse of 33.3-fs full-width at half-maximum, and the initial energy of an electron of gamma(0) = 10, the motion of the electron is relativistic and generates an ultrashort radiation of 76-as with a photon wave length of 2.5-nm in the backward scattering. The radiation under a high relativistic energy electron has better characteristic than under a low relativistic energy electron in terms of the pulse width and the angular distribution. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
In this report, we start from Lagrange equation and analyze theoretically the electron dynamics in electromagnetic field. By solving the relativistic government equations of electron, the trajectories of an electron in plane laser pulse, focused laser pulse have been given for different initial conditions. The electron trajectory is determined by its initial momentum, the amplitude, spot size and polarization of the laser pulse. The optimum initial momentum of the electron for LSS (laser synchrotron source) is obtained. Linear polarized laser is more advantaged than circular polarized laser for generating harmonic radiation.
Resumo:
Com a introdução do flúor como o principal agente anticariogênico e, talvez, um aumento do flúor na nossa cadeia alimentar, a fluorose dentária tornou-se um problema mundial. Os mecanismos que conduzem à formação do esmalte fluorótico são desconhecidos, mas devem envolver modificações nas reações físico-químicas básicas de desmineralização e remineralização do esmalte dentário. O aumento daquantidade de flúor no cristal apatita resulta no aumento dos parâmetros de rede. O objetivo deste trabalho é caracterizar o esmalte dentário humano saudável e fluorótico usando difração de raios X com luz síncrotron. Todos os perfis de espalhamento foram medidos na linha de difração de raios X (XRD1) do Laboratório Nacional de Luz Síncrotron, Campinas SP. Os experimentos foram realizados usando amostras em pó e em lâminas polidas. As amostras em pó foram analisadas a fim de obter a caracterização do esmalte dentário saudável. As lâminas foram analisadas em áreas do esmalte específicas identificadas como fluoróticas. Todos os perfis foram comparados com amostras de esmalte de controle e também com a literatura. A evidente similaridade entre os perfis de difração mostraram a analogia entre as estruturas do esmalte dentário e a hidroxiapatita padrão. Fica evidente que os perfis de difração do esmalte dentário das amostras em lâmina são diferentes daqueles obtidos para o esmalte em pó. As diferenças encontradas incluem variação na cristalinidade e orientação preferencial. Os valores encontrados para as distâncias interplanares para o esmalte de controle e fluorótico das amostras em lâmina não apresentaram diferenças estatisticamente significativas. Isto pode ser explicado pelo fato que a hidroxiapatita e a fluoropatita formam cristais com a mesma estrutura hexagonal, mesmo grupo de simetria e têm parâmetros de rede muito próximos, os quais a habilidade do sistema não foi suficiente para resolver. Finalmente, este trabalho mostra que a difração de raios X usando radiação síncrotron é uma técnica poderosa para o estudo da cristalografia e microestrutura do esmalte dentário e, ainda, pode ser igualmente aplicada no estudo de outros tecidos biológicos duros e de biomateriais sintéticos.
Resumo:
X-ray phase imaging with illumination by a partially coherent source with a setup similar to in-line holography is considered. Using the optical transform function, we consider the effects of partial coherence on this x-ray phase imaging for a weak phase object. The optimal contrast and the resolution of phase imaging are analyzed. As the coherence decreases, the imaging contrast and the optimal contrast frequency decrease, and the resolution degrades. It is shown that this contrast-enhanced phase-imaging method can be regarded as a linear bandpass filter and that the bandwidth and the image contrast are changeable. The frequency property of the imaging system can be improved if an incoherent x-ray source with the proper shape is used. (C) 1999 Optical Society of America.
Resumo:
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly.
We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments.
We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which the melting temperature is a design criterion.
We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the optimization of "higher-level" properties whose determination requires extensive sampling of atomic configuration space.