924 resultados para SUBCELLULAR-LOCALIZATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma), a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, including RNA metabolism, microRNA biogenesis and DNA repair. However, the precise cellular function of FUS remains unclear. Recently, mutations in the FUS gene have been found in ∼5% of familial Amyotrophic Lateral Sclerosis, a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are investigating the effects of DNA damage both in the presence or in the absence of FUS. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line expressing a doxycycline-induced shRNA targeting FUS, which specifically depletes the protein. We have found that FUS depletion induces an activation of the DNA damage response (DDR). However, treatment with genotoxic agents did not induce any strong changes in ATM (Ataxia Telangiectasia Mutated)-mediated DDR signaling. Interestingly, genotoxic treatment results in changes in the subcellular localization of FUS in normal cells. We are currently exploring on one hand the mechanism by which FUS depletion leads to DNA damage, and on the other the functional significance of FUS relocalization after genotoxic stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

U7 snRNPs were isolated from HeLa cells by biochemical fractionation, followed by affinity purification with a biotinylated oligonucleotide complementary to U7 snRNA. Purified U7 snRNPs lack the Sm proteins D1 and D2, but contain additional polypeptides of 14, 50 and 70 kDa. Microsequencing identified the 14 kDa polypeptide as a new Sm-like protein related to Sm D1 and D3. Like U7 snRNA, this protein, named Lsm10, is enriched in Cajal bodies of the cell nucleus. Its incorporation into U7 snRNPs is largely dictated by the special Sm binding site of U7 snRNA. This novel type of Sm complex, composed of both conventional Sm proteins and the Sm-like Lsm10, is most likely to be important for U7 snRNP function and subcellular localization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phyllotaxis, the regular arrangement of leaves and flowers around the stem, is one of the most fascinating patterning phenomena in biology. Numerous theoretical models, that are based on biochemical, biophysical and other principles, have been proposed to explain the development of the patterns. Recently, auxin has been identified as the inducer of organ formation. An emerging model for phyllotaxis states that polar auxin transport in the plant apex generates local peaks in auxin concentration that determine the site of organ formation and thereby the different phyllotactic patterns found in nature. The PIN proteins play a primary role in auxin transport. These proteins are localized in a polar fashion, reflecting the directionality of polar auxin transport. Recent evidence shows that most aspects of phyllotaxis can be explained by the expression pattern and the dynamic subcellular localization of PIN1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Death-associated protein kinase 2 (DAPK2) is a Ca(2+)/calmodulin-dependent Ser/Thr kinase that possesses tumor-suppressive functions and regulates programmed cell death, autophagy, oxidative stress, hematopoiesis, and motility. As only few binding partners of DAPK2 have been determined, the molecular mechanisms governing these biological functions are largely unknown. We report the identification of 180 potential DAPK2 interaction partners by affinity purification-coupled mass spectrometry, 12 of which are known DAPK binding proteins. A small subset of established and potential binding proteins detected in this screen was further investigated by bimolecular fluorescence complementation (BiFC) assays, a method to visualize protein interactions in living cells. These experiments revealed that α-actinin-1 and 14-3-3-β are novel DAPK2 binding partners. The interaction of DAPK2 with α-actinin-1 was localized at the plasma membrane, resulting in massive membrane blebbing and reduced cellular motility, whereas the interaction of DAPK2 with 14-3-3-β was localized to the cytoplasm, with no impact on blebbing, motility, or viability. Our results therefore suggest that DAPK2 effector functions are influenced by the protein's subcellular localization and highlight the utility of combining mass spectrometry screening with bimolecular fluorescence complementation to identify and characterize novel protein-protein interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hexanucleotide repeat expansions in the C9ORF72 gene are causally associated with frontotemporal lobar dementia (FTLD) and/or amyotrophic lateral sclerosis (ALS). The physiological function of the normal C9ORF72 protein remains unclear. In this study, we characterized the subcellular localization of C9ORF72 to processing bodies (P-bodies) and its recruitment to stress granules (SGs) upon stress-related stimuli. Gain of function and loss of function experiments revealed that the long isoform of C9ORF72 protein regulates SG assembly. CRISPR/Cas9-mediated knockdown of C9ORF72 completely abolished SG formation, negatively impacted the expression of SG-associated proteins such as TIA-1 and HuR, and accelerated cell death. Loss of C9ORF72 expression further compromised cellular recovery responses after the removal of stress. Additionally, mimicking the pathogenic condition via the expression of hexanucleotide expansion upstream of C9ORF72 impaired the expression of the C9ORF72 protein, caused an abnormal accumulation of RNA foci, and led to the spontaneous formation of SGs. Our study identifies a novel function for normal C9ORF72 in SG assembly and sheds light into how the mutant expansions might impair SG formation and cellular-stress-related adaptive responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mammalian Alix (ALG2-interacting protein X&barbelow;) is a conserved adaptor protein that is involved in endosomal trafficking, apoptosis and growth factor receptor turnover. Accumulating evidence also indicates that Alix plays roles in promoting/maintaining spread and aligned fibroblast morphology in monolayer culture. Since cell morphology is determined by the structure and dynamics of an integrin-mediated transmembrane protein network that links extracellular matrix to intracellular cytoskeleton, we hypothesized that Alix plays direct or indirect roles in regulating certain components or steps in this transmembrane protein network. To test this hypothesis, we first examined the subcellular localization of Alix and discovered that, as a predominantly cytoplasmic protein, Alix is also present on the substratum/cell surface and in the conditioned medium of fibroblast cultures. Further, precoating of culture surfaces with recombinant Alix promotes spreading and fibronectin assembly to NIH/3T3 cells, and siRNA-mediated Alix knockdown in W138 cells has the opposite effects. These findings indicate the extracellular functions of Alix in regulating cell spreading and extracellular matrix assembly. In a separate study, we analyzed Alix immunocomplexes from normal fibroblast W138 cells by mass spectrometry and identified actin as a major partner protein of Alix. Follow-up studies demonstrated that Alix preferentially binds filamentous actin (F-actin) in vitro and is required for maintaining normal F-actin content and proper actin cytoskeleton assembly in W138 cells. These findings establish direct and essential roles of Alix in regulating actin cytoskeleton. Finally, we investigated the effects of Alix knockdown on the activation and subcellular localization of FAK and Pyk2, the focal adhesion kinases required for cell spreading/migration by promoting turnover of integrin-mediated cell adhesions. We discovered that Alix knockdown inhibits FAK and Pyk2 localizations to focal adhesions or plasma membrane, in association with characteristics of reduced turnover of focal adhesions. These findings reveal a positive role of Alix in focal adhesion turnover. Based on these results, we conclude that Alix targets both intracellularly and extracellularly components to regulate extracellular matrix remodeling, actin cytoskeleton assembly and focal adhesion turnover. A combination of these three functions of Alix explains its crucial role in regulating spread and aligned fibroblast morphology. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The p21-activated kinase 5 (PAK5) is a serine/threonine protein kinase associated with the group 2 subfamily of PAKs. Although our understanding about PAK5 is very limited, it is receiving increasing interest due to its tissue specific expression pattern and important signaling properties. PAK5 is highly expressed in brain. Its overexpression induces neurite outgrowth in neuroblastoma cells and promotes survival in fibroblasts. ^ The serine/threonine protein kinase Raf-1 is an essential mediator of Ras-dependent signaling that controls the ERK/MAPK pathway. In contrast to PAK5, Raf-1 has been the subject of intensive investigation. However due to the complexity of its activation mechanism, the biological inputs controlling Raf-1 activation are not fully understood. ^ PAKs 1-3 are the known kinases responsible for phosphorylation of Raf-1 on serine 338, which is a crucial phosphorylation site for Raf-1 activation. However, dominant negative versions of these kinases do not block EGF-induced Raf-1 activation, indicating that other kinases may regulate the phosphorylation of Raf-1 on serine 338. ^ This thesis work was initiated to test whether the group 2 PAKs 4, 5 and 6 are responsible for EGF-induced Raf-1 activation. We found that PAK5, and to a lesser extent PAK4, can activate Raf-1 in cells. Our studies thereafter focused on PAK5. With the progress of our study we found that PAK5 does not significantly stimulate serine 338 phosphorylation of Triton X-100 soluble Raf-1. PAK5, however, constitutively and specifically associates with Raf-1 and targets it to a Triton X-100 insoluble, mitochondrial compartment, where PAK5 phosphorylates serine 338 of Raf-1. We further demonstrated that endogenous PAK5 and Raf-1 colocalize in Hela cells at the mitochondrial outer membrane. In addition, we found that the mitochondria-targeting of PAK5 is determined by its C-terminal kinase domain plus the upstream proximal region, and facilitated by the N-terminal p21 binding domain. We also demonstrated that Rho GTPases Cdc42 and RhoD associate with and regulate the subcellular localization of PAK5. Taken together, this work suggests that the mitochondria-targeting of PAK5 may link Ras and Rho GTPase-mediated signaling pathways, and sheds light on aspects of PAK5 signaling that may be important for regulating neuronal homeostasis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Breast cancer is the second most common farm of cancers and the second leading cause of cancer death for American women. Clinical studies indicate inflammation is a risk factor for breast cancer development. Among the cytokines and chemokines secreted by the infiltrating inflammatory cells, tumor necrosis factor a (TNFα) is considered one of the most important inflammatory factors involved in inflammation-mediated tumorigenesis. ^ Here we found that TNFα/IKKβ signaling pathway is able to increase tumor angiogenesis through activation of mTOR pathway. While investigating which molecule in the mTOR pathway involved in TNFα/IKKβ-mediated mTOR activation, our results showed that IKKβ physically interacts with and phosphorylates TSC1 at Ser487 and Ser511 in vitro and in vivo. Phosphorylation of TSC1 by IKKβ inhibits its association with TSC2, alters TSC2 membrane localization, and thereby activates mTOR. In vitro angiogenesis assays and orthotopic breast cancer model reveals that phosphorylation of TSC1 by IKKβ enhances VEGF expression, angiogenesis and culminates in tumorigenesis. Furthermore, expression of activated IKKβ is associated with TSC1 Ser511 phosphorylation and VEGF production in multiple tumor types and correlates with poor clinical outcome of breast cancer patients. ^ Furthermore, dysregulation of tumor suppressor FOXO3a contributes to the development of breast cancer. We found that overexpression of IKKβ led to inhibition of FOXO3a-mediated transactivation activity. While investigating the underlying mechanisms of IKKβ-mediated dysregulation of FOXO3a, our results showed that IKKβ physically associated with FOXO3a and phosphorylated FOXO3a at Ser644 in vitro and in vivo. The phosphorylation of FOXO3a by IKKβ altered its subcellular localization from nucleus to cytoplasm and promoted its degradation through ubiquitin-proteasome pathway. Mutation of FOXO3a at Ser644 prevented IKKβ-induced ubiquitination and degradation. In vitro cell proliferation assay and orthotopic breast cancer model revealed that phosphorylation of FOXO3a by IKKβ overrode FOXO3a-mediated repression of tumor progression. ^ In conclusion, our findings identify IKKβ-mediated suppressions of both TSC1 and FOXO3a are critical for inflammation-mediated breast cancer development through increasing tumor angiogenesis and evading apoptosis, respectively. Understanding the role of IKKβ in both FOXO3a and TSC/mTOR signaling pathways provides a critical insight of inflammation-mediated diseases and may provide a target for clinical intervention in human breast cancer. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germ cell development is a highly coordinated process driven, in part, by regulatory mechanisms that control gene expression. Not only transcription, but also translation, is under regulatory control to direct proper germ cell development. In this dissertation, I have focused on two regulators of germ cell development. One is the homeobox protein RHOX10, which has the potential to be both a transcriptional and translational regulator in mouse male germ cell development. The other is the RNA-binding protein, Hermes, which functions as a translational regulator in Xenopus laevis female germ cell development. ^ Rhox10 is a member of reproductive homeobox gene X-(linked (Rhox) gene cluster, of which expression is developmentally regulated in developing mouse testes. To identify the cell types and developmental stages in which Rhox10 might function, I characterized its temporal and spatial expression pattern in mouse embryonic, neonatal, and adult tissues. Among other things, this analysis revealed that both the level and the subcellular localization of RHOX10 are regulated during germ cell development. To understand the role of Rhox10 in germ cell development, I generated transgenic mice expressing an artificial microRNA (miRNA) targeting Rhox10. While this artificial miRNA robustly downregulated RHOX10 protein expression in vitro, it did not significantly reduce RHOX10 expression in vivo. So I next elected to knockdown RHOX10 levels in spermatogonial stem cells (SSCs), which I found highly express both Rhox10 mRNA and RHOX10 protein. Using a recently developed in vitro culture system for SSCs combined with a short-hairpin RNA (shRNA) approach, I strongly depleted RHOX10 expression in SSCs. These RHOX10-depleted cells exhibited a defect in the ability to form stem cell clusters in vitro. Expression profiling analysis revealed many genes regulated by Rhox10, including many meiotic genes, which could be downstream of Rhox10 in a molecular pathway that controls SSC differentiation. ^ RNA recognition motif (RRM) containing protein, Hermes is localized in germ plasm, where dormant mRNAs are also located, of Xenopus oocytes, which implicates its role in translational regulator. To understand the function of Hermes in oocyte meiosis, I used a morpholino oligonucleotide (MO) based knockdown approach. Microinjection of Hermes MO into fully grown oocytes, which are arrested in meiotic prophase, caused acceleration of oocytes reentry into meiosis (i.e., maturation) upon progesterone induction. Using a candidate approach, I identified at least three targets of Hermes: Ringo/Spy, Xcat2, and Mos. Ringo/Spy and Mos are known to have functions in oocyte maturation, while Ringo/Spy, Xcat2 mRNA are localized in the germ plasm of oocytes, which drives germ cell specification after fertilization. This led me to propose that Hermes functions in both oocyte maturation and germ cell development through its ability to regulate 3 crucial target mRNAs. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agrobacterium tumefaciens is a plant pathogen with the unique ability to export oncogenic DNA-protein complexes (T-complexes) to susceptible plant cells and cause crown gall tumors. Delivery of the T-complexes across the bacterial membranes requires eleven VirB proteins and VirD4, which are postulated to form a transmembrane transporter. This thesis examines the subcellular localization and oligomeric structure of the 87-kDa VirB4 protein, which is one of three essential ATPases proposed to energize T-complex transport and/or assembly. Results of subcellular localization studies showed that VirB4 is tightly associated with the cytoplasmic membrane, suggesting that it is a membrane-spanning protein. The membrane topology of VirB4 was determined by using a nested deletion strategy to generate random fusions between virB4 and the periplasmically-active alkaline phosphatase, $\sp\prime phoA$. Analysis of PhoA and complementary $\beta$-galactosidase reporter fusions identified two putative periplasmically-exposed regions in VirB4. A periplasmic exposure of one of these regions was further confirmed by protease susceptibility assays using A. tumefaciens spheroplasts. To gain insight into the structure of the transporter, the topological configurations of other VirB proteins were also examined. Results from hydropathy analyses, subcellular localization, protease susceptibility, and PhoA reporter fusion studies support a model that all of the VirB proteins localize at one or both of the bacterial membranes. Immunoprecipitation and Co$\sp{2+}$ affinity chromatography studies demonstrated that native VirB4 (87-kDa) and a functional N-terminally tagged HIS-VirB4 derivative (89-kDa) interact and that the interaction is independent of other VirB proteins. A $\lambda$ cI repressor fusion assay supplied further evidence for VirB4 dimer formation. A VirB4 dimerization domain was localized to the N-terminal third of the protein, as judged by: (i) transdominance of an allele that codes for this region of VirB4; (ii) co-retention of a His-tagged N-terminal truncation derivative and native VirB4 on Co$\sp{2+}$ affinity columns; and (iii) dimer formation of the N-terminal third of VirB4 fused to the cI repressor protein. Taken together, these findings are consistent with a model that VirB4 is topologically configured as an integral cytoplasmic membrane protein with two periplasmic domains and that VirB4 assembles as homodimers via an N-terminal dimerization domain. Dimer formation is postulated to be essential for stabilization of VirB4 monomers during T-complex transporter assembly. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regulation of uterine quiescence involves the integration of the signaling pathways regulating uterine contraction and relaxation. Uterine contractants increase intracellular calcium through receptor/GαqPLC coupling, resulting in contraction of the myometrium. Elevation of cAMP concentration has been correlated with relaxation of the myometrium. However, the mechanism of cAMP action in the uterus is unclear. ^ Both endogenous and exogenous increases in cAMP inhibited oxytocin-stimulated phosphatidylinositide turnover in an immortalized pregnant human myometrial cell line (PHM1-41). This inhibition was reversed by cAMP-dependent protein kinase (PKA) inhibitors, suggesting the involvement of PKA. cAMP inhibited phosphatidyinositide turnover stimulated by different agonists in different cell lines. These data suggest that the cAMP inhibitory mechanism is neither cell nor receptor dependent, and inhibits Gαq/PLCβ1 and PLCβ3 coupling. ^ The subcellular localization of PKA occurs via PKA binding to A-Kinase-Anchoring-Proteins (AKAP), and peptides that inhibit this association have been developed (S-Ht31). S-Ht31 blocked cAMP-stimulated PKA activity and decreased PKA concentration in PHM1-41 cell plasma membranes. S-Ht31 reversed the ability of CPT-cAMP, forskolin and relaxin to inhibit phosphatidylinositide turnover in PHM1-41 cells. Overlay analysis of both PHM1-41 cell and nonpregnant rat myometrium found an AKAPs of 86 kDa and 150 kDa associated with the plasma membrane, respectively. These data suggest that PKA anchored to the plasma membrane via AKAP150/PKA anchoring is involved in the cAMP inhibitory mechanism. ^ CPT-cAMP and isoproterenol inhibited phosphatidylinositide turnover in rat myometrium from days 12 through 20 of gestation. In contrast, neither agent was effective in the 21 day pregnant rat myometrium. The decrease in the cAMP inhibitory mechanism was correlated with a decrease in PKA and an increase in protein phosphatase 2B (PP2B) concentration in rat myometrial plasma membranes on day 21 of gestation. In myometrial total cell homogenates, both PKA and PP2B concentration increased on day 21. S-Ht31 inhibited cAMP inhibition of phosphatidylinositide turnover in day 19 pregnant rat myometrium. Both PKA and PP2B coimmunoprecipitated with an AKAP150 in a gestational dependent manner, suggesting this AKAP localizes PKA and PP2B to the plasma membrane. ^ These data presented demonstrate the importance of the cAMP inhibitory mechanism in regulating uterine contractility. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapid redistribution of STAT subcellular localization is an essential feature of cytokine signaling. To elucidate the molecular basis of STAT3 function, which plays a critical role in controlling innate immune responses in vivo, we initiated studies to determine the mechanisms controlling STAT3 nuclear trafficking. We found that STAT3 is transported to the nucleus in the absence of cytokine treatment, as judged by indirect immunofluorescence studies in the presence of leptomycin B, an inhibitor of CRM1-dependent nuclear export, suggesting that the non-phosphorylated STAT3 protein contains a functional nuclear import signal. An isoform lacking the STAT3 N-terminal domain (Δ133STAT3) retains the ability to undergo constitutive nuclear localization, indicating that this region is not essential for cytokine-independent nuclear import. Δ133STAT3 is also transported to the nucleus following stimulation with interleukin-6 (IL-6). Interestingly, IL-6-dependent tyrosine phosphorylation of Δ133STAT3 appears to be prolonged and the nuclear export of the protein delayed in cells expressing endogenous STAT3, consistent with defective Δ133STAT3 dephosphorylation. Endogenous STAT3 does not promote the nuclear export of Δ133STAT3, although dimerization between endogenous Stat3 and Δ133STAT3 is detected readily. Thus, the STAT3 N-terminal domain is not required for dimerization with full-length STAT3, yet appears to play a role in proper export of Stat3 from the nucleus following cytokine stimulation. STAT3-deficient cells reconstituted with Δ133STAT3 show enhanced and prolonged Stat1 signaling in response to IL-6, suggesting that induction of the STAT3-dependent negative regulator SOCS3 is impaired. In fact, Δ133STAT3 fails to induce SOCS3 mRNA efficiently. These studies collectively indicate that the STAT3 N-terminal region may be important for IL-6-dependent target gene activation and nuclear dephosphorylation, while dispensable for nuclear import. STAT3 is an oncogene. STAT3 is constitutively activated in primary tumors of many types. Thus far, research in the design of STAT3 protein inhibitors has focused on the SH2 and DNA-binding domains of STAT3. Interference with these domains eliminates all signaling through STAT3. If the N-terminal domain is involved in tetramerization on a subset of target genes, inhibition of this region may lead to a more selective inhibition of some STAT3 functions while leaving others intact. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plant cysteine-proteases (CysProt) represent a well-characterized type of proteolytic enzymes that fulfill tightly regulated physiological functions (senescence and seed germination among others) and defense roles. This article is focused on the group of papain-proteases C1A (family C1, clan CA) and their inhibitors, phytocystatins (PhyCys). In particular, the protease–inhibitor interaction and their mutual participation in specific pathways throughout the plant's life are reviewed. C1A CysProt and PhyCys have been molecularly characterized, and comparative sequence analyses have identified consensus functional motifs. A correlation can be established between the number of identified CysProt and PhyCys in angiosperms. Thus, evolutionary forces may have determined a control role of cystatins on both endogenous and pest-exogenous proteases in these species. Tagging the proteases and inhibitors with fluorescence proteins revealed common patterns of subcellular localization in the endoplasmic reticulum–Golgi network in transiently transformed onion epidermal cells. Further in vivo interactions were demonstrated by bimolecular fluorescent complementation, suggesting their participation in the same physiological processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La semilla es el principal órgano reproductivo de las plantas espermatofitas, permitiendo la dispersión de las poblaciones y asegurando su supervivencia gracias a su tolerancia a la desecación y a su capacidad para germinar bajo condiciones ambientales óptimas. El rendimiento y valor económico de los cereales, que constituyen la primera cosecha mundial, depende, en buena medida, de la eficacia con que se acumulan en la semilla sustancias de reserva: proteínas, carbohidratos y lípidos. El principal carbohidrato acumulado en la semilla de cebada es el almidón y la fracción mayoritaria de proteínas es la de las prolaminas (solubles en etanol al 70%); estas proteínas tienen muy bajo contenido en lisina, un aminoácido esencial en la dieta de animales monogástricos. Con el fin de mejorar el valor nutricional de la semilla de cebada, se han obtenido diferentes mutantes con un mayor contenido en este aminoácido. Riso 1508 es un mutante de cebada rico en lisina cuya mutación lys3a, de efectos pleiotrópicos, segrega como un único gen mendeliano. Entre otros, presenta una reducción drástica de la expresión de algunos genes que codifican proteínas de reserva de tipo prolamina, en concreto, presenta reducida la expresión de los genes que codifican B-, C- y ϒ-Hordeínas y del inhibidor de tripsina CMe, pero no tiene alterada la expresión del gen que codifica las D-Hordeínas. Este último gen carece en su promotor del motivo GLM (5’‐(G/A)TGA(G/C)TCA(T/C)‐3’), que es reconocido por factores transcripcionales bZIP. En este trabajo, el mutante de cebada Riso 1508 se ha utilizado como herramienta para profundizar en el conocimiento de la regulación génica en semillas durante las fases de la maduración y la germinación. Para ello, en una primera aproximación, se llevó a cabo un análisis transcriptómico comparando el genotipo mutante con el silvestre durante la maduración de la semilla. Además de confirmar variaciones en los genes que codifican proteínas de reserva, este análisis indicó que también estaban afectados los genes relacionados con metabolismo de carbohidratos. Por ello se decidió caracterizar la familia multigénica de sacarosas sintasa (SUSy) en cebada. Se anotaron dos nuevos genes, HvSs3 y HvSs4, cuya expresión se comparó con la de los genes HvSs1 y HvSs2, previamente descritos en el laboratorio. La expresión de los cuatro genes en tejidos diferentes y su respuesta a estreses abióticos se analizó mediante RT-qPCR. HvSs1 y HvSs2 se expresaron preferencialmente durante el desarrollo del endospermo, y HvSs1 también fue un tránscrito abundante durante la germinación. HvSs1 se indujo en hojas en condiciones de anoxia y HvSs3 por estrés hídrico, y ambos genes se indujeron por tratamientos de frío. La localización subcelular de las cuatro isoformas no fue sólo citoplásmica, sino que también se localizaron en zonas próximas a retículo endoplásmico y en la cara interna de la membrana plasmática; además, se observó una co-localización de HvSS1 con el marcador de mitocondrias. Estos datos sugieren un papel distinto aunque parcialmente solapante de las cuatro Sacarosa Sintasas de cebada, descritas hasta la fecha. Las cinéticas de expresión de los genes que codifican los TFs más importantes implicados en la regulación génica durante el desarrollo del endospermo de cebada, se analizaron por RT-qPCR en ambos genotipos, demostrando que los TFs de la clase DOF aparecieron desregulados durante todo el proceso en Riso 1508 comparado con el cv. Bomi, aunque también se observaron diferencias significativas en algunos de los que codifican bZIPs. Estudios previos indicaban que el ortólogo de BLZ2 en maíz, O2, se regula post-traduccionalmente mediante un mecanismo de fosforilación/defosforilación reversible, y que la forma defosforilada es la fisiológicamente activa. En este trabajo se demostró que BLZ2 está sujeto a este tipo de regulación y que la proteín-fosfatasa HvPP2C2 está implicada en el proceso. La interacción de HvPP2C2 y BLZ2 tiene lugar en el núcleo celular únicamente en presencia de 100 μM ABA. En el mutante Riso 1508, BLZ2 se encuentra en un estado hiperfosforilado tanto durante la maduración como durante la germinación de la semilla, lo que dificultaría la unión de BLZ2 a las secuencias GLM en los promotores de los genes que codifican B-, C-,y ϒ- Hordeínas y CMe. Summary The seed is the main reproductive organ of spermatophyte plants allowing the spread of populations and ensuring their survival through its desiccation tolerance and because of their ability to germinate under optimum environmental conditions. Yield and economic value of cereal crops, that constitute the first world crop, depend largely on the efficiency with which they accumulate in the seed reserve substances: proteins, carbohydrates and lipids. The main carbohydrate accumulated in the barley seed is starch and the major protein fraction is that of prolamins (soluble in 70% ethanol); these proteins have a very low lysine content, an essential amino-acid for the diet of monogastric animals. In order to improve the nutritional value of the barley seed, different mutants have been obtained with a higher content of this amino-acid. Riso 1508 is one lysine-rich mutant whose mutation (lys3a) segregates as a single Mendelian gene with pleiotropic effects, such as a drastic reduction of genes encoding the trypsin inhibitor CMe and the B-, C-and ϒ-hordeins, but has not altered the expression of the gene encoding the D-hordeins. This latter gene lacks in its promotor the GLM motif (5’‐(G/A)TGA(G/C)TCA(T/C)‐3’), that is recognised by bZIP transcription factors In this work we have used the barley mutant Riso 1508 as a tool for better understanding gene regulation in seeds during the maturation and germination phases. To this aim, a transcriptomic analysis was performed comparing wild and mutant genotypes during seed maturation. Besides confirming variations in the expression of genes encoding reserve proteins, this analysis indicated that some genes related with carbohydrate metabolism were also affected. It was therefore decided to characterize the multigene family of sucrose synthases (SUSy) in barley. Two new genes were annotated, HvSs3 and HvSs4, and its expression was compared with that of genes HvSs1 and HvSs2, previously described in our laboratory. The expression of the four genes in different tissues and in response to abiotic stresses was analyzed by RTqPCR. HvSs1 and HvSs2 were preferentially expressed during the development of the endosperm, and the HvSs1 transcript was also abundant upon germination. HvSs1 was induced in leaves by anoxic conditions, HvSs3 by water stress, and both genes were induced by cold treatments. The subcellular localization of all four isoforms was not only cytoplasmic, but they could be found along the endoplasmic reticulum and at the inner side of the cell membrane; HvSS1, was also associated with the mitochondrial marker. These data suggest a distinct but partially overlapping roles for the barley sucrose synthases, described so far. The expression kinetics of the genes encoding the most important TFs involved in gene regulation during barley endosperm development was analyzed by RT-qPCR in both genotypes. These data show that the genes encoding DOF TFs were mis-regulated throughout the process in Riso 1508, although significant differences were also found among some of those encoding bZIPs. Previous studies indicated that the BLZ2 orthologue in maize, O2, was post-translationally regulated by reversible phosphorylation/dephosphorylation and that the dephosphorylated protein is the physiologically active form. In this work we demostrate that BLZ2 is under a similar regulation and that the proteinphosphatase HvPP2C2 is implicated in the process. The interaction between HvPP2C2 and BLZ2 takes place in the cell nucleus only in the presence of 100 μM ABA. In the Riso 1508 mutant, BLZ2 is found in a hyperphosphorylated state in the maturation phase and upon seed germination; because of this, the BLZ2 binding to the GLM promoter sequences of genes encoding B-, C- y ϒ- Hordeins and CMe would be decreased in the mutant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amidases [EC 3.5.1.4] capable of converting indole-3-acetamide (IAM) into the major plant growth hormone indole-3-acetic acid (IAA) are assumed to be involved in auxin de novo biosynthesis. With the emerging amount of genomics data, it was possible to identify over forty proteins with substantial homology to the already characterized amidases from Arabidopsis and tobacco. The observed high conservation of amidase-like proteins throughout the plant kingdom may suggest an important role of theses enzymes in plant development. Here, we report cloning and functional analysis of four, thus far, uncharacterized plant amidases from Oryza sativa, Sorghum bicolor, Medicago truncatula, and Populus trichocarpa. Intriguingly, we were able to demonstrate that the examined amidases are also capable of converting phenyl-2-acetamide (PAM) into phenyl-2-acetic acid (PAA), an auxin endogenous to several plant species including Arabidopsis. Furthermore, we compared the subcellular localization of the enzymes to that of Arabidopsis AMI1, providing further evidence for similar enzymatic functions. Our results point to the presence of a presumably conserved pathway of auxin biosynthesis via IAM, as amidases, both of monocot, and dicot origins, were analyzed.