745 resultados para SPORTS-MEDICINE
Resumo:
Mesenchymal stem cells (MSCs) were demonstrated to exist within peripheral blood (PB) of several mammalian species including human, guinea pig, mice, rat, and rabbit. Whether or not the PB derived MSCs (PBMSCs) could enhance the regeneration of large bone defects have not been reported. In this study, rabbit MSCs were obtained from mononuclear cells (MNCs) cultures of both the PB and bone marrow (BM) origin. The number of PBMSCs was relatively lower, with the colony forming efficiency (CFE) ranging from 1.2-13 per million MNCs. Under specific inductive conditions, PBMSCs differentiated into osteoblasts, chondrocytes, and adipocytes, showing multi- differentiation ability similar to BMMSCs. Bilateral 20 mm critical-sized bone defects were created in the ulnae of twelve 6-month old New Zealand white rabbits. The defects were treated with allogenic PBMSCs/Skelite (porous calcium phosphate resorbable substitute), BMMSCs/Skelite, PBMNCs/Skelite, Skelite alone and left empty for 12 weeks. Bone regeneration was evaluated by serial radiography, peripheral quantitative computed tomography (pQCT), and histological examinations. The x-ray scores and the pQCT total bone mineral density in the PBMSCs/Skelite and BMMSCs/Skelite treated groups were significantly greater than those of the PBMNCs/Skelite and Skelite alone groups (p
Resumo:
The purpose of this study was to test whether a constant bearing angle strategy could account for the displacement regulations produced by a moving observer when attempting to intercept a ball following a curvilinear path. The participants were asked to walk through a virtual environment and to change, if (deemed) necessary, their walking speed so as to intercept a moving ball that followed either a rectilinear or a curvilinear path. The results showed that ball path curvature did indeed influence the participants' displacement kinematics in a way that was predicted by adherence to a constant bearing angle strategy mode of control. Velocity modifications were found to be proportional to the magnitude of target curvature with opposing curvatures giving rise to mirror displacement velocity changes. The role of prospective strategies in the control of interceptive action is discussed
Resumo:
Since remote times, certain sectors of society have been exposed to inequality and vulnerability, where adequate intervention processes have become conspicuous because of their absence. Nowadays, current societies have the responsibility of contributing, based on their experience and knowledge, with more efficient policies and programs that improve the life quality of the most disadvantaged. It is here where art and its different tools play a very important role, not only on a physical level, but also as an education tool that allows the development of emotional, mental and communicative skills. The aim of this paper is to make clear the potential of art as an instrument of social and educational intervention. It starts by showing worldwide-collected experience related to education and arts, and then, it acquaints the reader with two parallel intervention projects that worked with youths under social vulnerability conditions. These interventions were developed based on a qualitative research (Grounded theory), using as methodology “The Artistic Mediation” with emphasis on body language. This methodology helped researchers to get close to the participants and to know their experiences and emotions. At the same time, it was possible to evidence the positive effects of educative interventions through art. These workshops were based on an artistic methodology especially focused on body language. Data in this work is qualitative, and as such, it permits a special approach to the personal and emotional experiences of the participants; clearly showing the positive effects of the referenced practice on them.
Resumo:
Osteoporosis (OP) is one of the most prevalent bone diseases worldwide with bone fracture the major clinical consequence. The effect of OP on fracture repair is disputed and although it might be expected for fracture repair to be delayed in osteoporotic individuals, a definitive answer to this question still eludes us. The aim of this study was to clarify the effect of osteoporosis in a rodent fracture model. OP was induced in 3-month-old rats (n = 53) by ovariectomy (OVX) followed by an externally fixated, mid-diaphyseal femoral osteotomy at 6 months (OVX group). A further 40 animals underwent a fracture at 6 months (control group). Animals were sacrificed at 1, 2, 4, 6, and 8 weeks postfracture with outcome measures of histology, biomechanical strength testing, pQCT, relative BMD, and motion detection. OVX animals had significantly lower BMD, slower fracture repair (histologically), reduced stiffness in the fractured femora (8 weeks) and strength in the contralateral femora (6 and 8 weeks), increased body weight, and decreased motion. This study has demonstrated that OVX is associated with decrease in BMD (particularly in trabecular bone) and a reduction in the mechanical properties of intact bone and healing fractures. The histological, biomechanical, and radiological measures of union suggest that OVX delayed fracture healing. (C) 2007 Orthopaedic Research Society. Published by Wiley Periodicals.
Resumo:
Background: Infection remains a severe complication following a total hip replacement. If infection is suspected when revision surgery is being performed, additional gentamicin is often added to the cement on an ad hoc basis in an attempt to reduce the risk of recurrent infection.
Methods and results: In this in vitro study, we determined the effect of incorporating additional gentamicin on the mechanical properties of cement. We also determined the degree of gentamicin release from cement, and also the extent to which biofilms of clinical Staphylococcus spp. isolates form on cement in vitro. When gentamicin was added to unloaded cement (1–4 g), there was a significant reduction in the mechanical performance of the loaded cements compared to unloaded cement. A significant increase in gentamicin release from the cement over 72 h was apparent, with the amount of gentamicin released increasing significantly with each additional 1 g of gentamicin added. When overt infection was modeled, the incorporation of additional gentamicin did result in an initial reduction in bacterial colonization, but this beneficial effect was no longer apparent by 72 h, with the clinical strains forming biofilms on the cements despite the release of high levels of gentamicin.
Interpretation: Our findings indicate that the addition of large amounts of gentamicin to cement is unlikely to eradicate bacteria present as a result of an overt infection of an existing implant, and could result in failure of the prosthetic joint because of a reduction in mechanical performance of the bone cement.
Resumo:
One can partially eliminate motor skills acquired through practice in the hours immediately following practice by applying repetitive transcranial stimulation (rTMS) over the primary motor cortex. The disruption of acquired levels of performance has been demonstrated on tasks that are ballistic in nature. The authors investigated whether motor recall on a discrete aiming task is degraded following a disruption of the primary motor cortex induced via rTMS. Participants (N = 16) maintained acquired performance levels and patterns of muscle activity following the application of rTMS. despite a reduction in corticospinal excitability. Disruption of the primary motor cortex during a consolidation period did not influence the retention of acquired skill in this type of discrete visuomotor task.
Resumo:
The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination-pronation (SP) at the elbow-joint complex. Participants (N = 10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. That result provides evidence that the predominance of the in-phase pattern originates in the influence of neuro-muscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.
Resumo:
Adults are proficient at reaching to grasp objects of interest in a cluttered workspace. The issue of concern, obstacle avoidance, was studied in 3 groups of young children aged 11-12, 9-10, and 7-8 years (n = 6 in each) and in 6 adults aged 18-24 years. Adults slowed their movements and decreased their maximum grip aperture when an obstacle was positioned close to a target object (the effect declined as the distance between target and obstacle increased). The children showed the same pattern, but the magnitude of the effect was quite different. In contrast to the adults, the obstacle continued to have a large effect when it was some distance from the target (and provided no physical obstruction to movement).
Resumo:
To examine the role of the effector dynamics of the wrist in the production of rhythmic motor activity, we estimated the phase shifts between the EMG and the task-related output for a rhythmic isometric torque production task and an oscillatory movement, and found a substantial difference (45-52degrees) between the two. For both tasks, the relation between EMG and task-related output (torque or displacement) was adequately reproduced with a physiologically motivated musculoskeletal model. The model simulations demonstrated the importance of the contribution of passive structures to the overall dynamics and provided an account for the observed phase shifts in the dynamic task. Additional simulations of the musculoskeletal model with added load suggested that particular changes in the phase relation between EMG and movement may follow largely from the intrinsic muscle dynamics, rather than being the result of adaptations in the neural control of joint stiffness. The implications of these results are discussed in relation to (models of) interlimb coordination in rhythmic tasks. (C) 2004 Elsevier B.V. All rights reserved.