253 resultados para SPLINE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present MBIS (Multivariate Bayesian Image Segmentation tool), a clustering tool based on the mixture of multivariate normal distributions model. MBIS supports multi-channel bias field correction based on a B-spline model. A second methodological novelty is the inclusion of graph-cuts optimization for the stationary anisotropic hidden Markov random field model. Along with MBIS, we release an evaluation framework that contains three different experiments on multi-site data. We first validate the accuracy of segmentation and the estimated bias field for each channel. MBIS outperforms a widely used segmentation tool in a cross-comparison evaluation. The second experiment demonstrates the robustness of results on atlas-free segmentation of two image sets from scan-rescan protocols on 21 healthy subjects. Multivariate segmentation is more replicable than the monospectral counterpart on T1-weighted images. Finally, we provide a third experiment to illustrate how MBIS can be used in a large-scale study of tissue volume change with increasing age in 584 healthy subjects. This last result is meaningful as multivariate segmentation performs robustly without the need for prior knowledge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents a mathematical method for producing hard-chine ship hulls based on a set of numerical parameters that are directly related to the geometric features of the hull and uniquely define a hull form for this type of ship. The term planing hull is used generically to describe the majority of hard-chine boats being built today. This article is focused on unstepped, single-chine hulls. B-spline curves and surfaces were combined with constraints on the significant ship curves to produce the final hull design. The hard-chine hull geometry was modeled by decomposing the surface geometry into boundary curves, which were defined by design constraints or parameters. In planing hull design, these control curves are the center, chine, and sheer lines as well as their geometric features including position, slope, and, in the case of the chine, enclosed area and centroid. These geometric parameters have physical, hydrodynamic, and stability implications from the design point of view. The proposed method uses two-dimensional orthogonal projections of the control curves and then produces three-dimensional (3-D) definitions using B-spline fitting of the 3-D data points. The fitting considers maximum deviation from the curve to the data points and is based on an original selection of the parameterization. A net of B-spline curves (stations) is then created to match the previously defined 3-D boundaries. A final set of lofting surfaces of the previous B-spline curves produces the hull surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a model of Bayesian network for continuous variables, where densities and conditional densities are estimated with B-spline MoPs. We use a novel approach to directly obtain conditional densities estimation using B-spline properties. In particular we implement naive Bayes and wrapper variables selection. Finally we apply our techniques to the problem of predicting neurons morphological variables from electrophysiological ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El comportamiento mecánico de muchos materiales biológicos y poliméricos en grandes deformaciones se puede describir adecuadamente mediante formulaciones isocóricas hiperelásticas y viscoelásticas. Las ecuaciones de comportamiento elástico y viscoelástico y las formulaciones computacionales para materiales incompresibles isótropos en deformaciones finitas están ampliamente desarrolladas en la actualidad. Sin embargo, el desarrollo de modelos anisótropos no lineales y de sus correspondientes formulaciones computacionales sigue siendo un tema de investigación de gran interés. Cuando se consideran grandes deformaciones, existen muchas medidas de deformación disponibles con las que poder formular las ecuaciones de comportamiento. Los modelos en deformaciones cuadráticas facilitan la implementación en códigos de elementos finitos, ya que estas medidas surgen de forma natural en la formulación. No obstante, pueden dificultar la interpretación de los modelos y llevar a resultados pocos realistas. El uso de deformaciones logarítmicas permite el desarrollo de modelos más simples e intuitivos, aunque su formulación computacional debe ser adaptada a las exigencias del programa. Como punto de partida, en esta tesis se demuestra que las deformaciones logarítmicas representan la extensión natural de las deformaciones infinitesimales, tanto axiales como angulares, al campo de las grandes deformaciones. Este hecho permite explicar la simplicidad de las ecuaciones resultantes. Los modelos hiperelásticos predominantes en la actualidad están formulados en invariantes de deformaciones cuadráticas. Estos modelos, ya sean continuos o microestructurales, se caracterizan por tener una forma analítica predefinida. Su expresión definitiva se calcula mediante un ajuste de curvas a datos experimentales. Un modelo que no sigue esta metodología fue desarrollado por Sussman y Bathe. El modelo es sólo válido para isotropía y queda definido por una función de energía interpolada con splines, la cual reproduce los datos experimentales de forma exacta. En esta tesis se presenta su extensión a materiales transversalmente isótropos y ortótropos utilizando deformaciones logarítmicas. Asimismo, se define una nueva propiedad que las funciones de energía anisótropas deben satisfacer para que su convergencia al caso isótropo sea correcta. En visco-hiperelasticidad, aparte de las distintas funciones de energía disponibles, hay dos aproximaciones computational típicas basadas en variables internas. El modelo original de Simó está formulado en tensiones y es válido para materiales anisótropos, aunque sólo es adecuado para pequeñas desviaciones con respecto al equilibrio termodinámico. En cambio, el modelo basado en deformaciones de Reese y Govindjee permite grandes deformaciones no equilibradas pero es, en esencia, isótropo. Las formulaciones anisótropas en este último contexto son microestructurales y emplean el modelo isótropo para cada uno de los constituyentes. En esta tesis se presentan dos formulaciones fenomenológicas viscoelásticas definidas mediante funciones hiperelásticas anisótropas y válidas para grandes desviaciones con respecto al equilibrio termodinámico. El primero de los modelos está basado en la descomposición multiplicativa de Sidoroff y requiere un comportamiento viscoso isótropo. La formulación converge al modelo de Reese y Govindjee en el caso especial de isotropía elástica. El segundo modelo se define a partir de una descomposición multiplicativa inversa. Esta formulación está basada en una descripción co-rotacional del problema, es sustancialmente más compleja y puede dar lugar a tensores constitutivos ligeramente no simétricos. Sin embargo, su rango de aplicación es mucho mayor ya que permite un comportamiento anisótropo tanto elástico como viscoso. Varias simulaciones de elementos finitos muestran la gran versatilidad de estos modelos cuando se combinan con funciones hiperelásticas formadas por splines. ABSTRACT The mechanical behavior of many polymeric and biological materials may be properly modelled be means of isochoric hyperelastic and viscoelastic formulations. These materials may sustain large strains. The viscoelastic computational formulations for isotropic incompressible materials at large strains may be considered well established; for example Ogden’s hyperelastic function and the visco-hyperelastic model of Reese and Govindjee are well known models for isotropy. However, anisotropic models and computational procedures both for hyperelasticity and viscohyperelasticity are still under substantial research. Anisotropic hyperelastic models are typically based on structural invariants obtained from quadratic strain measures. These models may be microstructurallybased or phenomenological continuum formulations, and are characterized by a predefined analytical shape of the stored energy. The actual final expression of the stored energy depends on some material parameters which are obtained from an optimization algorithm, typically the Levenberg-Marquardt algorithm. We present in this work anisotropic spline-based hyperelastic stored energies in which the shape of the stored energy is obtained as part of the procedure and which (exactly in practice) replicates the experimental data. These stored energies are based on invariants obtained from logarithmic strain measures. These strain measures preserve the metric and the physical meaning of the trace and deviator operators and, hence, are interesting and meaningful for anisotropic formulations. Furthermore, the proposed stored energies may be formulated in order to have material-symmetries congruency both from a theoretical and from a numerical point of view, which are new properties that we define in this work. On the other hand, visco-hyperelastic formulations for anisotropic materials are typically based on internal stress-like variables following a procedure used by Sim´o. However, it can be shown that this procedure is not adequate for large deviations from thermodynamic equilibrium. In contrast, a formulation given by Reese and Govindjee is valid for arbitrarily large deviations from thermodynamic equilibrium but not for anisotropic stored energy functions. In this work we present two formulations for visco-hyperelasticity valid for anisotropic stored energies and large deviations from thermodynamic equilibrium. One of the formulations is based on the Sidoroff multiplicative decomposition and converges to the Reese and Govindjee formulation for the case of isotropy. However, the formulation is restricted to isotropy for the viscous component. The second formulation is based on a reversed multiplicative decomposition. This last formulation is substantially more complex and based on a corotational description of the problem. It can also result in a slightly nonsymmetric tangent. However, the formulation allows for anisotropy not only in the equilibrated and non-equilibrated stored energies, but also in the viscous behavior. Some examples show finite element implementation, versatility and interesting characteristics of the models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to develop an automated tool for the optimization of turbomachinery blades founded on an evolutionary strategy. This optimization scheme will serve to deal with supersonic blades cascades for application to Organic Rankine Cycle (ORC) turbines. The blade geometry is defined using parameterization techniques based on B-Splines curves, that allow to have a local control of the shape. The location in space of the control points of the B-Spline curve define the design variables of the optimization problem. In the present work, the performance of the blade shape is assessed by means of fully-turbulent flow simulations performed with a CFD package, in which a look-up table method is applied to ensure an accurate thermodynamic treatment. The solver is set along with the optimization tool to determine the optimal shape of the blade. As only blade-to-blade effects are of interest in this study, quasi-3D calculations are performed, and a single-objective evolutionary strategy is applied to the optimization. As a result, a non-intrusive tool, with no need for gradients definition, is developed. The computational cost is reduced by the use of surrogate models. A Gaussian interpolation scheme (Kriging model) is applied for the estimated n-dimensional function, and a surrogate-based local optimization strategy is proved to yield an accurate way for optimization. In particular, the present optimization scheme has been applied to the re-design of a supersonic stator cascade of an axial-flow turbine. In this design exercise very strong shock waves are generated in the rear blade suction side and shock-boundary layer interaction mechanisms occur. A significant efficiency improvement as a consequence of a more uniform flow at the blade outlet section of the stator is achieved. This is also expected to provide beneficial effects on the design of a subsequent downstream rotor. The method provides an improvement to gradient-based methods and an optimized blade geometry is easily achieved using the genetic algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a method to segment airplane radar tracks in high density terminal areas where the air traffic follows trajectories with several changes in heading, speed and altitude. The radar tracks are modelled with different types of segments, straight lines, cubic spline function and shape preserving cubic function. The longitudinal, lateral and vertical deviations are calculated for terminal manoeuvring area scenarios. The most promising model of the radar tracks resulted from a mixed interpolation using straight lines for linear segments and spline cubic functions for curved segments. A sensitivity analysis is used to optimise the size of the window for the segmentation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of the local Lagrangian evolution of the flow topology in wall-bounded turbulence, and of the Lagrangian evolution associated with entrainment across the turbulent / non-turbulent interface into a turbulent boundary layer, require accurate tracking of a fluid particle and its local velocity gradients. This paper addresses the implementation of fluid-particle tracking in both a turbulent boundary layer direct numerical simulation and in a fully developed channel flow simulation. Determination of the sub-grid particle velocity is performed using both cubic B-spline, four-point Hermite spline and higher-order Hermite spline interpolation. Both wall-bounded flows show similar oscillations in the Lagrangian tracers of both velocity and velocity gradients, corresponding to the movement of particles across the boundaries of computational cells. While these oscillation in the particle velocity are relatively small and have negligible effect on the particle trajectories for time-steps of the order of CFL = 0.1, they appear to be the cause of significant oscillations in the evolution of the invariants of the velocity gradient tensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La investigación de esta tesis se centra en el estudio de técnicas geoestadísticas y su contribución a una mayor caracterización del binomio factores climáticos-rendimiento de un cultivo agrícola. El inexorable vínculo entre la variabilidad climática y la producción agrícola cobra especial relevancia en estudios sobre el cambio climático o en la modelización de cultivos para dar respuesta a escenarios futuros de producción mundial. Es información especialmente valiosa en sistemas operacionales de monitoreo y predicción de rendimientos de cultivos Los cuales son actualmente uno de los pilares operacionales en los que se sustenta la agricultura y seguridad alimentaria mundial; ya que su objetivo final es el de proporcionar información imparcial y fiable para la regularización de mercados. Es en este contexto, donde se quiso dar un enfoque alternativo a estudios, que con distintos planteamientos, analizan la relación inter-anual clima vs producción. Así, se sustituyó la dimensión tiempo por la espacio, re-orientando el análisis estadístico de correlación interanual entre rendimiento y factores climáticos, por el estudio de la correlación inter-regional entre ambas variables. Se utilizó para ello una técnica estadística relativamente nueva y no muy aplicada en investigaciones similares, llamada regresión ponderada geográficamente (GWR, siglas en inglés de “Geographically weighted regression”). Se obtuvieron superficies continuas de las variables climáticas acumuladas en determinados periodos fenológicos, que fueron seleccionados por ser factores clave en el desarrollo vegetativo de un cultivo. Por ello, la primera parte de la tesis, consistió en un análisis exploratorio sobre comparación de Métodos de Interpolación Espacial (MIE). Partiendo de la hipótesis de que existe la variabilidad espacial de la relación entre factores climáticos y rendimiento, el objetivo principal de esta tesis, fue el de establecer en qué medida los MIE y otros métodos geoestadísticos de regresión local, pueden ayudar por un lado, a alcanzar un mayor entendimiento del binomio clima-rendimiento del trigo blando (Triticum aestivum L.) al incorporar en dicha relación el componente espacial; y por otro, a caracterizar la variación de los principales factores climáticos limitantes en el crecimiento del trigo blando, acumulados éstos en cuatro periodos fenológicos. Para lleva a cabo esto, una gran carga operacional en la investigación de la tesis consistió en homogeneizar y hacer los datos fenológicos, climáticos y estadísticas agrícolas comparables tanto a escala espacial como a escala temporal. Para España y los Bálticos se recolectaron y calcularon datos diarios de precipitación, temperatura máxima y mínima, evapotranspiración y radiación solar en las estaciones meteorológicas disponibles. Se dispuso de una serie temporal que coincidía con los mismos años recolectados en las estadísticas agrícolas, es decir, 14 años contados desde 2000 a 2013 (hasta 2011 en los Bálticos). Se superpuso la malla de información fenológica de cuadrícula 25 km con la ubicación de las estaciones meteorológicas con el fin de conocer los valores fenológicos en cada una de las estaciones disponibles. Hecho esto, para cada año de la serie temporal disponible se calcularon los valores climáticos diarios acumulados en cada uno de los cuatro periodos fenológicos seleccionados P1 (ciclo completo), P2 (emergencia-madurez), P3 (floración) y P4 (floraciónmadurez). Se calculó la superficie interpolada por el conjunto de métodos seleccionados en la comparación: técnicas deterministas convencionales, kriging ordinario y cokriging ordinario ponderado por la altitud. Seleccionados los métodos más eficaces, se calculó a nivel de provincias las variables climatológicas interpoladas. Y se realizaron las regresiones locales GWR para cuantificar, explorar y modelar las relaciones espaciales entre el rendimiento del trigo y las variables climáticas acumuladas en los cuatro periodos fenológicos. Al comparar la eficiencia de los MIE no destaca una técnica por encima del resto como la que proporcione el menor error en su predicción. Ahora bien, considerando los tres indicadores de calidad de los MIE estudiados se han identificado los métodos más efectivos. En el caso de la precipitación, es la técnica geoestadística cokriging la más idónea en la mayoría de los casos. De manera unánime, la interpolación determinista en función radial (spline regularizado) fue la técnica que mejor describía la superficie de precipitación acumulada en los cuatro periodos fenológicos. Los resultados son más heterogéneos para la evapotranspiración y radiación. Los métodos idóneos para estas se reparten entre el Inverse Distance Weighting (IDW), IDW ponderado por la altitud y el Ordinary Kriging (OK). También, se identificó que para la mayoría de los casos en que el error del Ordinary CoKriging (COK) era mayor que el del OK su eficacia es comparable a la del OK en términos de error y el requerimiento computacional de este último es mucho menor. Se pudo confirmar que existe la variabilidad espacial inter-regional entre factores climáticos y el rendimiento del trigo blando tanto en España como en los Bálticos. La herramienta estadística GWR fue capaz de reproducir esta variabilidad con un rendimiento lo suficientemente significativo como para considerarla una herramienta válida en futuros estudios. No obstante, se identificaron ciertas limitaciones en la misma respecto a la información que devuelve el programa a nivel local y que no permite desgranar todo el detalle sobre la ejecución del mismo. Los indicadores y periodos fenológicos que mejor pudieron reproducir la variabilidad espacial del rendimiento en España y Bálticos, arrojaron aún, una mayor credibilidad a los resultados obtenidos y a la eficacia del GWR, ya que estaban en línea con el conocimiento agronómico sobre el cultivo del trigo blando en sistemas agrícolas mediterráneos y norteuropeos. Así, en España, el indicador más robusto fue el balance climático hídrico Climatic Water Balance) acumulado éste, durante el periodo de crecimiento (entre la emergencia y madurez). Aunque se identificó la etapa clave de la floración como el periodo en el que las variables climáticas acumuladas proporcionaban un mayor poder explicativo del modelo GWR. Sin embargo, en los Bálticos, países donde el principal factor limitante en su agricultura es el bajo número de días de crecimiento efectivo, el indicador más efectivo fue la radiación acumulada a lo largo de todo el ciclo de crecimiento (entre la emergencia y madurez). Para el trigo en regadío no existe ninguna combinación que pueda explicar más allá del 30% de la variación del rendimiento en España. Poder demostrar que existe un comportamiento heterogéneo en la relación inter-regional entre el rendimiento y principales variables climáticas, podría contribuir a uno de los mayores desafíos a los que se enfrentan, a día de hoy, los sistemas operacionales de monitoreo y predicción de rendimientos de cultivos, y éste es el de poder reducir la escala espacial de predicción, de un nivel nacional a otro regional. ABSTRACT This thesis explores geostatistical techniques and their contribution to a better characterization of the relationship between climate factors and agricultural crop yields. The crucial link between climate variability and crop production plays a key role in climate change research as well as in crops modelling towards the future global production scenarios. This information is particularly important for monitoring and forecasting operational crop systems. These geostatistical techniques are currently one of the most fundamental operational systems on which global agriculture and food security rely on; with the final aim of providing neutral and reliable information for food market controls, thus avoiding financial speculation of nourishments of primary necessity. Within this context the present thesis aims to provide an alternative approach to the existing body of research examining the relationship between inter-annual climate and production. Therefore, the temporal dimension was replaced for the spatial dimension, re-orienting the statistical analysis of the inter-annual relationship between crops yields and climate factors to an inter-regional correlation between these two variables. Geographically weighted regression, which is a relatively new statistical technique and which has rarely been used in previous research on this topic was used in the current study. Continuous surface values of the climate accumulated variables in specific phenological periods were obtained. These specific periods were selected because they are key factors in the development of vegetative crop. Therefore, the first part of this thesis presents an exploratory analysis regarding the comparability of spatial interpolation methods (SIM) among diverse SIMs and alternative geostatistical methodologies. Given the premise that spatial variability of the relationship between climate factors and crop production exists, the primary aim of this thesis was to examine the extent to which the SIM and other geostatistical methods of local regression (which are integrated tools of the GIS software) are useful in relating crop production and climate variables. The usefulness of these methods was examined in two ways; on one hand the way this information could help to achieve higher production of the white wheat binomial (Triticum aestivum L.) by incorporating the spatial component in the examination of the above-mentioned relationship. On the other hand, the way it helps with the characterization of the key limiting climate factors of soft wheat growth which were analysed in four phenological periods. To achieve this aim, an important operational workload of this thesis consisted in the homogenization and obtention of comparable phenological and climate data, as well as agricultural statistics, which made heavy operational demands. For Spain and the Baltic countries, data on precipitation, maximum and minimum temperature, evapotranspiration and solar radiation from the available meteorological stations were gathered and calculated. A temporal serial approach was taken. These temporal series aligned with the years that agriculture statistics had previously gathered, these being 14 years from 2000 to 2013 (until 2011 for the Baltic countries). This temporal series was mapped with a phenological 25 km grid that had the location of the meteorological stations with the objective of obtaining the phenological values in each of the available stations. Following this procedure, the daily accumulated climate values for each of the four selected phenological periods were calculated; namely P1 (complete cycle), P2 (emergency-maturity), P3 (flowering) and P4 (flowering- maturity). The interpolated surface was then calculated using the set of selected methodologies for the comparison: deterministic conventional techniques, ordinary kriging and ordinary cokriging weighted by height. Once the most effective methods had been selected, the level of the interpolated climate variables was calculated. Local GWR regressions were calculated to quantify, examine and model the spatial relationships between soft wheat production and the accumulated variables in each of the four selected phenological periods. Results from the comparison among the SIMs revealed that no particular technique seems more favourable in terms of accuracy of prediction. However, when the three quality indicators of the compared SIMs are considered, some methodologies appeared to be more efficient than others. Regarding precipitation results, cokriging was the most accurate geostatistical technique for the majority of the cases. Deterministic interpolation in its radial function (controlled spline) was the most accurate technique for describing the accumulated precipitation surface in all phenological periods. However, results are more heterogeneous for the evapotranspiration and radiation methodologies. The most appropriate technique for these forecasts are the Inverse Distance Weighting (IDW), weighted IDW by height and the Ordinary Kriging (OK). Furthermore, it was found that for the majority of the cases where the Ordinary CoKriging (COK) error was larger than that of the OK, its efficacy was comparable to that of the OK in terms of error while the computational demands of the latter was much lower. The existing spatial inter-regional variability between climate factors and soft wheat production was confirmed for both Spain and the Baltic countries. The GWR statistic tool reproduced this variability with an outcome significative enough as to be considered a valid tool for future studies. Nevertheless, this tool also had some limitations with regards to the information delivered by the programme because it did not allow for a detailed break-down of its procedure. The indicators and phenological periods that best reproduced the spatial variability of yields in Spain and the Baltic countries made the results and the efficiency of the GWR statistical tool even more reliable, despite the fact that these were already aligned with the agricultural knowledge about soft wheat crop under mediterranean and northeuropean agricultural systems. Thus, for Spain, the most robust indicator was the Climatic Water Balance outcome accumulated throughout the growing period (between emergency and maturity). Although the flowering period was the phase that best explained the accumulated climate variables in the GWR model. For the Baltic countries where the main limiting agricultural factor is the number of days of effective growth, the most effective indicator was the accumulated radiation throughout the entire growing cycle (between emergency and maturity). For the irrigated soft wheat there was no combination capable of explaining above the 30% of variation of the production in Spain. The fact that the pattern of the inter-regional relationship between the crop production and key climate variables is heterogeneous within a country could contribute to one is one of the greatest challenges that the monitoring and forecasting operational systems for crop production face nowadays. The present findings suggest that the solution may lay in downscaling the spatial target scale from a national to a regional level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El período de la Historia comprendido entre 1570 y 1620 nos ha dejado un importante conjunto de documentos relacionados con la construcción naval en la Península Ibérica. En una época convulsa en la que los reinos de España y Portugal se aglutinaron bajo una misma Corona, surgen una serie de manuscritos, libros y leyes que reflejan la creciente preocupación de la sociedad por el tema naval. Entre sus páginas encontramos las descripciones del proceso constructivo de los buques que sus autores consideraban más significativos para las demandas que se planteaban en ese momento. Este proceso que combinaba generación de formas y construcción del buque provenía de una secular tradición nacida en el Mediterráneo. Mediante reglas geométricas sencillas, el constructor naval trazaba las secciones centrales y el perfil de la nao, quedando los extremos de la misma (hasta más de la mitad de la eslora) a su buen hacer y experiencia. Las herramientas informáticas de generación de superficies mediante NURBs (Non- Uniform Rational B-spline) permiten reconstruir las formas de los navíos reproduciendo con fiabilidad las carenas de los mismos a partir de los documentos de la época. Mediante un estudio detallado de interpretación de los textos y transcribiendo los procesos, llegamos a obtener con un buen grado de precisión las carenas de los buques descritos en sus páginas. A partir de ahí y mediante el análisis cualitativo y cuantitativo de los parámetros obtenidos es posible valorar si las soluciones representadas por los barcos respondían a las preguntas planteadas por sus autores , la influencia de factores externos a la construcción naval tales como las regulaciones del Estado o identificar su relación con el germen y la expansión de la teoría que ha determinado los efectos de la Ciencia en la Arquitectura Naval. Comenzando por la nao veneciana de 1550, heredera de la secular tradición constructiva mediterránea, hasta llegar a las Reales Ordenanzas promulgadas en 1618, se reproducen hasta nueve carenas a partir de otros tantos documentos, se dibujan sus planos de formas y se exportan para su análisis hidrostático. El trabajo requiere la realización de otros estudios en paralelo necesarios para entender aquellos factores que formaron parte del desarrollo tecnológico naval como son, las unidades de medida en uso en los astilleros, los distintos sistemas de arqueo impuestos por la Corona y la representación de los diferentes instrumentos geométricos de modificación de los parámetros de diseño. A lo largo del trabajo se dan respuesta a interrogantes planteados por la arqueología en relación con el desarrollo de la arquitectura naval poniendo en evidencia que durante este período quedaron establecidos los fundamentos teórico-prácticos de lo que más adelante se convirtió en la ciencia de la ingeniería naval y se plantean nuevos retos para aquellos que deseen continuar la apasionante tarea de la investigación científica de nuestra historia. ABSTRACT The period of the History comprised between 1570 and 1620 has left an important set of shipbuilding documents in the Iberian Peninsula. In a turbulent time in which the kingdoms of Spain and Portugal were ruled under the same Crown, manuscripts, books and laws that reflect the growing concern of society for the naval theme arose. We found among their pages shipbuilding process descriptions of the more relevant vessels that responded to claims that arose at that time. This process brought together hull generation and shipbuilding and came from a secular tradition born in the Mediterranean. By means of simple geometric rules, the shipbuilder traced the central sections and profile of the ship, leaving the ends thereof (almost half of the length) to its good performance and experience. 3D computer modelling software by NURBs (Non-Uniform Rational B-spline) surfaces helps to reconstruct ships hulls from contemporary documents. Through a detailed texts interpretation and transcription processes, we manage to reach with a good degree of accuracy the ship hulls described in its pages. From there and through qualitative and quantitative analysis of the parameters obtained we can assess whether the solutions represented by ships gave response to the questions raised by the authors, the influence of external factors such as shipbuilding state regulations or identify their relationship to the origin and expansion of the theory that has determined the effects of Science in Naval Architecture. From the 1550 Venetian nao, inheritor of the secular Mediterranean building tradition, to the Royal Ordinances enacted in 1618, as nine hulls are reproduced, their line drawings are traced and exported for analysis hydrostatic. Further studies are needed to understand the factors that were part of shipbuilding technology development as the units of measure in use in shipyards, the different official regulations for calculating ship tonnage and the different geometric instruments to amend the design parameters. The work gives response to questions raised by archaeology in relation to the development of naval architecture highlighting that during this period were established the theoretical and practical foundations of what later became the science of naval engineering and raising new challenges for those wishing to continue the exciting task of scientific research of our History.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propõe-se método novo e completo para análise de acetona em ar exalado envolvendo coleta com pré-concentração em água, derivatização química e determinação eletroquímica assistida por novo algoritmo de processamento de sinais. Na literatura recente a acetona expirada vem sendo avaliada como biomarcador para monitoramento não invasivo de quadros clínicos como diabetes e insuficiência cardíaca, daí a importância da proposta. Entre as aminas que reagem com acetona para formar iminas eletroativas, estudadas por polarografia em meados do século passado, a glicina apresentou melhor conjunto de características para a definição do método de determinação por voltametria de onda quadrada sem a necessidade de remoção de oxigênio (25 Hz, amplitude de 20 mV, incremento de 5 mV, eletrodo de gota de mercúrio). O meio reacional, composto de glicina (2 mol·L-1) em meio NaOH (1 mol·L-1), serviu também de eletrólito e o pico de redução da imina em -1,57 V vs. Ag|AgCl constituiu o sinal analítico. Para tratamento dos sinais, foi desenvolvido e avaliado um algoritmo inovador baseado em interpolação de linha base por ajuste de curvas de Bézier e ajuste de gaussiana ao pico. Essa combinação permitiu reconhecimento e quantificação de picos relativamente baixos e largos sobre linha com curvatura acentuada e ruído, situação em que métodos convencionais falham e curvas do tipo spline se mostraram menos apropriadas. A implementação do algoritmo (disponível em http://github.com/batistagl/chemapps) foi realizada utilizando programa open source de álgebra matricial integrado diretamente com software de controle do potenciostato. Para demonstrar a generalidade da extensão dos recursos nativos do equipamento mediante integração com programação externa em linguagem Octave (open source), implementou-se a técnica da cronocoulometria tridimensional, com visualização de resultados já tratados em projeções de malha de perspectiva 3D sob qualquer ângulo. A determinação eletroquímica de acetona em fase aquosa, assistida pelo algoritmo baseado em curvas de Bézier, é rápida e automática, tem limite de detecção de 3,5·10-6 mol·L-1 (0,2 mg·L-1) e faixa linear que atende aos requisitos da análise em ar exalado. O acetaldeído, comumente presente em ar exalado, em especial, após consumo de bebidas alcoólicas, dá origem a pico voltamétrico em -1,40 V, contornando interferência que prejudica vários outros métodos publicados na literatura e abrindo possibilidade de determinação simultânea. Resultados obtidos com amostras reais são concordantes com os obtidos por método espectrofotométrico, em uso rotineiro desde o seu aperfeiçoamento na dissertação de mestrado do autor desta tese. Em relação à dissertação, também se otimizou a geometria do dispositivo de coleta, de modo a concentrar a acetona num volume menor de água gelada e prover maior conforto ao paciente. O método completo apresentado, englobando o dispositivo de amostragem aperfeiçoado e o novo e efetivo algoritmo para tratamento automático de sinais voltamétricos, está pronto para ser aplicado. Evolução para um analisador portátil depende de melhorias no limite de detecção e facilidade de obtenção eletrodos sólidos (impressos) com filme de mercúrio, vez que eletrodos de bismuto ou diamante dopado com boro, entre outros, não apresentaram resposta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the analysis of heart rate variability (HRV) are used temporal series that contains the distances between successive heartbeats in order to assess autonomic regulation of the cardiovascular system. These series are obtained from the electrocardiogram (ECG) signal analysis, which can be affected by different types of artifacts leading to incorrect interpretations in the analysis of the HRV signals. Classic approach to deal with these artifacts implies the use of correction methods, some of them based on interpolation, substitution or statistical techniques. However, there are few studies that shows the accuracy and performance of these correction methods on real HRV signals. This study aims to determine the performance of some linear and non-linear correction methods on HRV signals with induced artefacts by quantification of its linear and nonlinear HRV parameters. As part of the methodology, ECG signals of rats measured using the technique of telemetry were used to generate real heart rate variability signals without any error. In these series were simulated missing points (beats) in different quantities in order to emulate a real experimental situation as accurately as possible. In order to compare recovering efficiency, deletion (DEL), linear interpolation (LI), cubic spline interpolation (CI), moving average window (MAW) and nonlinear predictive interpolation (NPI) were used as correction methods for the series with induced artifacts. The accuracy of each correction method was known through the results obtained after the measurement of the mean value of the series (AVNN), standard deviation (SDNN), root mean square error of the differences between successive heartbeats (RMSSD), Lomb\'s periodogram (LSP), Detrended Fluctuation Analysis (DFA), multiscale entropy (MSE) and symbolic dynamics (SD) on each HRV signal with and without artifacts. The results show that, at low levels of missing points the performance of all correction techniques are very similar with very close values for each HRV parameter. However, at higher levels of losses only the NPI method allows to obtain HRV parameters with low error values and low quantity of significant differences in comparison to the values calculated for the same signals without the presence of missing points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta pesquisa visa a análise da contribuição de cinco variáveis de entrada e a otimização do desempenho termo-hidráulico de trocadores de calor com venezianas combinados com geradores de vórtices delta-winglets. O desempenho termohidráulico de duas geometrias distintas, aqui nomeadas por GEO1 e GEO2, foram avaliadas. Smoothing Spline ANOVA foi usado para avaliar a contribuição dos parâmetros de entrada na transferência de calor e perda de carga. Considerando aplicação automotiva, foram investigados números de Reynolds iguais a 120 e 240, baseados no diâmetro hidráulico. Os resultados indicaram que o ângulo de venezianas é o maior contribuidor para o aumento do fator de atrito para GEO1 e GEO2, para ambos os números de Reynolds. Para o número de Reynolds menor, o parâmetro mais importante em termos de transferência de calor foi o ângulo das venezianas para ambas as geometrias. Para o número de Reynolds maior, o ângulo de ataque dos geradores de vórtices posicionados na primeira fileira é o maior contribuidor para a tranfesferência de calor, no caso da geometria GEO1, enquanto que o ângulo de ataque dos geradores de vórtices na primeira fileira foi tão importante quanto os ângulos das venezianas para a geometria GEO2. Embora as geometrias analisadas possam ser consideradas como técnicas compostas de intensificação da transferência de calor, não foram observadas interações relevantes entre ângulo de venezianas e parâmetros dos geradores de vórtices. O processo de otimização usa NSGA-II (Non-Dominated Sorting Genetic Algorithm) combinado com redes neurais artificiais. Os resultados mostraram que a adição dos geradores de vórtices em GEO1 aumentaram a transferência de calor em 21% e 23% com aumentos na perda de carga iguais a 24,66% e 36,67% para o menor e maior números de Reynolds, respectivamente. Para GEO2, a transferência de calor aumentou 13% e 15% com aumento na perda de carga de 20,33% e 23,70%, para o menor e maior número de Reynolds, respectivamente. As soluções otimizadas para o fator de Colburn mostraram que a transferência de calor atrás da primeira e da segunda fileiras de geradores de vórtices tem a mesma ordem de magnitude para ambos os números de Reynolds. Os padrões de escoamento e as características de transferência de calor das soluções otimizadas apresentaram comportamentos vi particulares, diferentemente daqueles encontrados quando as duas técnicas de intensificação de transferência de calor são aplicadas separadamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire a pour but de déterminer des nouvelles méthodes de détection de rupture et/ou de tendance. Après une brève introduction théorique sur les splines, plusieurs méthodes de détection de rupture existant déjà dans la littérature seront présentées. Puis, de nouvelles méthodes de détection de rupture qui utilisent les splines et la statistique bayésienne seront présentées. De plus, afin de bien comprendre d’où provient la méthode utilisant la statistique bayésienne, une introduction sur la théorie bayésienne sera présentée. À l’aide de simulations, nous effectuerons une comparaison de la puissance de toutes ces méthodes. Toujours en utilisant des simulations, une analyse plus en profondeur de la nouvelle méthode la plus efficace sera effectuée. Ensuite, celle-ci sera appliquée sur des données réelles. Une brève conclusion fera une récapitulation de ce mémoire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

logitcprplot can be used after logistic regression for graphing a component-plus-residual plot (a.k.a. partial residual plot) for a given predictor, including a lowess, local polynomial, restricted cubic spline, fractional polynomial, penalized spline, regression spline, running line, or adaptive variable span running line smooth