925 resultados para SPLICED LEADER RNA
Resumo:
As the distribution of Candida species and their susceptibility to antifungal agents have changed, a new means of accurately and rapidly identifying these species is necessary for the successful early resolution of infection and the subsequent reduction of morbidity and mortality. The current work aimed to evaluate ribosomal RNA gene sequencing for the identification of medically relevant Candida species in comparison with a standard phenotypic method. Eighteen reference strains (RSs), 69 phenotypically identified isolates and 20 inconclusively identified isolates were examined. Internal transcribed spaces (ITSs) and D1/D2 of the 26S ribosomal RNA gene regions were used as targets for sequencing. Additionally, the sequences of the ITS regions were used to establish evolutionary relationships. The sequencing of the ITS regions was successful for 88% (94/107) of the RS and isolates, whereas 100% of the remaining 12% (13/107) of the samples were successfully analysed by sequencing the D1/D2 region. Similarly, genotypic analysis identified all of the RS and isolates, including the 20 isolates that were not phenotypically identified. Phenotypic analysis, however, misidentified 10% (7/69) of the isolates. Phylogenetic analysis allowed the confirmation of the relationships between evolutionarily close species. Currently, the use of genotypic methods is necessary for the correct identification of Candida species.
Resumo:
Leishmania RNA virus (LRV) has been shown to be a symbiotic component of Leishmania parasites in South America. Nested retro-transcription polymerase chain reaction was employed to investigate LRV1 presence in leishmaniasis lesions from Brazil. In endemic areas of Rio de Janeiro (RJ), no LRV1 infection was observed even with mucosal involvement. LRV1 was only detected in Leishmania (V.) guyanensis cutaneous lesions from the northern region, which were obtained from patients presenting with disease reactivation after clinical cure of their primary lesions. Our results indicated that the severity of leishmaniasis in some areas of RJ, where Leishmania (V.) brazi-liensis is the primary etiological agent, was not associated with Leishmania LRV1 infection.
Resumo:
Chromatin remodeling and histone modification are essential for eukaryotic transcription regulation, but little is known about chromatin-modifying activities acting on RNA polymerase III (Pol III)-transcribed genes. The human U6 small nuclear RNA promoter, located 5' of the transcription start site, consists of a core region directing basal transcription and an activating region that recruits the transcription factors Oct-1 and Staf (ZNF143). Oct-1 activates transcription in part by helping recruit core binding factors, but nothing is known about the mechanisms of transcription activation by Staf. We show that Staf activates U6 transcription from a preassembled chromatin template in vitro and associates with several proteins linked to chromatin modification, among them chromodomain-helicase-DNA binding protein 8 (CHD8). CHD8 binds to histone H3 di- and trimethylated on lysine 4. It resides on the human U6 promoter as well as the mRNA IRF3 promoter in vivo and contributes to efficient transcription from both these promoters. Thus, Pol III transcription from type 3 promoters uses some of the same factors used for chromatin remodeling at Pol II promoters.
Resumo:
Mosquitoes are the culprits of some of the most important vector borne diseases. A species’ potential as a vector is directly dependent on their pattern of behaviour, which is known to change according to the female’s physiological status such as whether the female is virgin/mated and unfed/blood-fed. However, the molecular mechanism triggered by and/or responsible for such modulations in behaviour is poorly understood. Clock genes are known to be responsible for the control of circadian behaviour in several species. Here we investigate the impact mating and blood-feeding have upon the expression of these genes in the mosquito Aedes aegypti . We show that blood intake, but not insemination, is responsible for the down-regulation of clock genes. Using RNA interference, we observe a slight reduction in the evening activity peak in the fourth day after dstim injection. These data suggest that, as in Drosophila , clock gene expression, circadian behaviour and environmental light regimens are interconnected in Ae. aegypti .
Resumo:
Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLXL. Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.
Resumo:
We have studied the kinetics of RNA synthesis from the vaccinia virus 7,500-molecular-weight gene (7.5K gene) which is regulated by early and late promoters arranged in tandem. Unexpectedly, after a first burst of RNA synthesis early in infection, transcription was reactivated late in infection. Reactivation was not dependent on the location of the promoter in the genome or on the presence of the upstream late regulatory sequences. The mRNA synthesized from the reactivated promoter in the late phase had the same 5' and 3' ends as the molecules transcribed in the early phase. Interestingly, these molecules were efficiently translated despite the absence of the poly(A) leader characteristic of late mRNAs. Reactivation appears to be dependent on virus assembly since it is prevented by rifampin, a specific inhibitor of morphogenesis. Finally, analysis of various other early genes showed that reactivation is not unique to the 7.5K early promoter.
Resumo:
Histology is the gold standard for diagnosing acute rejection and hepatitis C recurrence after liver transplantation. However, differential diagnosis between the two can be difficult. We evaluated the role of C4d staining and quantification of hepatitis C virus (HCV) RNA levels in liver tissue. This was a retrospective study of 98 liver biopsy samples divided into four groups by histological diagnosis: acute rejection in patients undergoing liver transplant for hepatitis C (RejHCV+), HCV recurrence in patients undergoing liver transplant for hepatitis C (HCVTx+), acute rejection in patients undergoing liver transplant for reasons other than hepatitis C and chronic hepatitis C not transplanted (HCVTx-). All samples were submitted for immunohistochemical staining for C4d and HCV RNA quantification. Immunoexpression of C4d was observed in the portal vessels and was highest in the HCVTx- group. There was no difference in C4d expression between the RejHCV+ and HCVTx+ groups. However, tissue HCV RNA levels were higher in the HCVTx+ group samples than in the RejHCV+ group samples. Additionally, there was a significant correlation between tissue and serum levels of HCV RNA. The quantification of HCV RNA in liver tissue might prove to be an efficient diagnostic test for the recurrence of HCV infection.
Resumo:
This study analyses the evolution of liver disease in women with chronic hepatitis C during the third trimester of pregnancy and the post-partum period, as a natural model of immune modulation and reconstitution. Of the 122 mothers recruited to this study, 89 were HCV-RNA+ve/HIV-ve and 33 were HCV-RNA-ve/HIV-ve/HCVantibody+ve and all were tested during the third trimester of pregnancy, at delivery and post-delivery. The HCV-RNA+ve mothers were categorized as either Type-A (66%), with an increase in ALT levels in the post-partum period (>40 U/L; P<0.001) or as Type-B (34%), with no variation in ALT values. The Type-A mothers also presented a significant decrease in serum HCV-RNA levels in the post-delivery period (P<0.001) and this event was concomitant with an increase in Th1 cytokine levels (INFγ, P = 0.04; IL12, P = 0.01 and IL2, P = 0.01). On the other hand, the Type-B mothers and the HCV-RNA-ve women presented no variations in either of these parameters. However, they did present higher Th1 cytokine levels in the partum period (INFγ and IL2, P<0.05) than both the Type-A and the HCV-RNA-ve women. Cytokine levels at the moment of delivery do not constitute a risk factor associated with HCV vertical transmission. It is concluded that differences in the ALT and HCV-RNA values observed in HCV-RNA+ve women in the postpartum period might be due to different ratios of Th1 cytokine production. In the Type-B women, the high partum levels of Th1 cytokines and the absence of post-partum variation in ALT and HCV-RNA levels may be related to permanent Th1 cytokine stimulation.
Resumo:
We used incentivized experimental games to manipulate leader power-the number of followers and the discretion leaders had to enforce their will. Leaders had complete autonomy in deciding payouts to themselves and their followers. Although leaders could make prosocial decisions to benefit the public good they could also abuse their power by invoking antisocial decisions, which reduced the total payouts to the group but increased leader's earnings. In Study 1 (N = 478), we found that both amount of followers and discretionary choices independently predicted leader corruption. In Study 2 (N = 240), we examined how power and individual differences (e.g., personality, hormones) affected leader corruption over time; power interacted with testosterone in predicting corruption, which was highest when leader power and baseline testosterone were both high. Honesty predicted initial level of leader antisocial decisions; however, honesty did not shield leaders from the corruptive effect of power.
Resumo:
Background & Aims: Single nucleotide polymorphisms (SNPs) associated with IL28B influence the outcome of peginterferon-alpha/ribavirin therapy of chronic hepatitis C virus (HCV) infection. We analyzed the kinetics of HCV RNA during therapy as a function of IL28B SNPs.Methods: IL28B SNPs rs8099917, rs12979860, and rs12980275 were genotyped in 242 HCV treatment-naive Caucasian patients (67% genotype 1, 28% genotype 2 or 3) receiving peginterferon-alpha 2a (180 mu g weekly) and ribavirin (1000-1200 mg daily) with serial HCV-RNA quantifications. Associations between IL28B polymorphisms and early viral kinetics were assessed, accounting for relevant covariates.Results: In the multivariate analyses for genotype 1 patients, the T allele of rs12979860 (T(rs12979860)) was an independent risk factor for a less pronounced first phase HCV RNA decline (log(10) 0.89 IU/ml among T carriers vs. 2.06 among others, adjusted p <0.001) and lower rapid (15% vs. 38%, adjusted p = 0.007) and sustained viral response rates (48% vs. 66%, adjusted p <0.001). In univariate analyses, Trs12979860 was also associated with a reduced second phase decline (p = 0.002), but this association was no longer significant after adjustment for the first phase decline (adjusted p = 0.8). In genotype 2/3 patients, Trs12979860 was associated with a reduced first phase decline (adjusted p = 0.04), but not with a second phase decline.Conclusions: Polymorphisms in IL28B are strongly associated with the first phase viral decline during peginterferon-alpha/ribavirin therapy of chronic HCV infection, irrespective of HCV genotype. (C) 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Resumo:
Viruses have evolved strategies to overcome the antiviral effects of the host at different levels. Besides specific defence mechanisms, the host responds to viral infection via the interferon pathway and also by RNA interference (RNAi). However, several viruses have been identified that suppress RNAi. We addressed the question of whether hepatitis C virus (HCV) suppresses RNAi, using cell lines constitutively expressing green fluorescent protein (GFP) and inducibly expressing HCV proteins. It was found that short interfering RNA-mediated GFP gene silencing was inhibited when the entire HCV polyprotein was expressed. Further studies showed that HCV structural proteins, and in particular envelope protein 2 (E2), were responsible for this inhibition. Co-precipitation assays demonstrated that E2 bound to Argonaute-2 (Ago-2), a member of the RNA-induced silencing complex, RISC. Thus, HCV E2 that interacts with Ago-2 is able to suppress RNAi.
Resumo:
The opportunistic pathogen Pseudomonas aeruginosa PAO1 has a remarkable capacity to adapt to various environments and to survive with limited nutrients. Here, we report the discovery and characterization of a novel small non-coding RNA: NrsZ (nitrogen-regulated sRNA). We show that under nitrogen limitation, NrsZ is induced by the NtrB/C two component system, an important regulator of nitrogen assimilation and P. aeruginosa's swarming motility, in concert with the alternative sigma factor RpoN. Furthermore, we demonstrate that NrsZ modulates P. aeruginosa motility by controlling the production of rhamnolipid surfactants, virulence factors notably needed for swarming motility. This regulation takes place through the post-transcriptional control of rhlA, a gene essential for rhamnolipids synthesis. Interestingly, we also observed that NrsZ is processed in three similar short modules, and that the first short module encompassing the first 60 nucleotides is sufficient for NrsZ regulatory functions.
Resumo:
The interaction of Escherichia coli RNA polymerase with supercoiled DNA was visualized by cryo-electron microscopy of vitrified samples and by classical electron microscopy methods. We observed that when E. coli RNA polymerase binds to a promoter on supercoiled DNA, this promoter becomes located at an apical loop of the interwound DNA molecule. During transcription RNA polymerase shifts the apical loop along the DNA, always remaining at the top of the moving loop. This relationship between RNA polymerase and the supercoiled template precludes circling of the RNA polymerase around the DNA and prevents the growing RNA transcript from becoming entangled with the template DNA.
Resumo:
The small nuclear RNA-activating protein complex SNAP(c) is required for transcription of small nuclear RNA genes and binds to a proximal sequence element in their promoters. SNAP(c) contains five types of subunits stably associated with each other. Here we show that one of these polypeptides, SNAP45, also known as PTF delta, localizes to centrosomes during parts of mitosis, as well as to the spindle midzone during anaphase and the mid-body during telophase. Consistent with localization to these mitotic structures, both down- and up-regulation of SNAP45 lead to a G(2)/M arrest with cells displaying abnormal mitotic structures. In contrast, down-regulation of SNAP190, another SNAP(c) subunit, leads to an accumulation of cells with a G(0)/G(1) DNA content. These results are consistent with the proposal that SNAP45 plays two roles in the cell, one as a subunit of the transcription factor SNAP(c) and another as a factor required for proper mitotic progression.