356 resultados para SPINOR ELECTRODYNAMICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a SUSY variant of the action for a massless spinning particles via the inclusion of twistor variables. The action is constructed to be invariant under SUSY transformations and tau-reparametrizations even when an interaction field is including. The constraint analysis is achieved and the equations of motion are derived. The commutation relations obtained for the commuting spinor variables lambda(alpha) show that the particle states have fractional statistics and spin. At once we introduce a possible massive term for the non-interacting model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A U(2,2 vertical bar 4)-invariant A-model constructed from fermionic superfields has recently been proposed as a sigma model for the superstring on AdS(5) X S(5). After explaining the relation of this A-model with the pure spinor formalism, the A-model action is expressed as a gauged linear sigma model. In the zero radius limit, the Coulomb branch of this sigma model is interpreted as D-brane holes which are related to gauge-invariant N = 4 d=4 super-Yang-Mills operators. As in the worldsheet derivation of open-closed duality for Chem-Simons theory, this construction may lead to a worldsheet derivation of the Maldacena conjecture. Intriguing connections to the twistorial formulation of N = 4 Yang-Mills are also noted. (Republished with permission of JHEP from JHEP 0803:031, 2008.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained that includes derivatives of the curvature. We analyze the form of the second field strength, G=partial derivative F+fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of F and quadratic contractions of G are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his generalized electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behavior at short distances as well as a meso-large distance modification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spectrum of linearized excitations of the Type IIB SUGRA on AdS(5) x S-5 contains both unitary and non-unitary representations. Among the non-unitary, some are finite-dimensional. We explicitly construct the pure spinor vertex operators for a family of such finite-dimensional representations. The construction can also be applied to in finite-dimensional representations, including unitary, although it becomes in this case somewhat less explicit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental action, representing a mass dimension-transmuting operator between Dirac and ELKO spinor fields, is performed on the Dirac Lagrangian, in order to lead it into the ELKO Lagrangian. Such a dynamical transformation can be seen as a natural extension of the Standard Model that incorporates dark matter fields. The action of the mass dimension-transmuting operator on a Dirac spinor field, that de fines and introduces such a mapping, is shown to be a composition of the Dirac operator and the nonunitary transformation that maps Dirac spinor fields into ELKO spinor fields, de fined in J. Math. Phys. 4 8, 123517 (2007). This paper gives allowance for ELKO, as a candidate to describe dark matter, to be incorporated in the Standard Model. It is intended to present for the first time, up to our knowledge, the dynamical character of a mapping between Dirac and ELKO spinor fields, transmuting the mass dimension of spin one-half fermionic fields from 3/2 to 1 and from 1 to 3/2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the classical pure spinor worldsheet theory of AdS(5) x S-5 there are some vertex operators which do not correspond to any physical excitations. We study their flat space limit. We find that the BRST operator of the worldsheet theory in flat space-time can be nontrivially deformed without deforming the worldsheet action. Some of these deformations describe the linear dilaton background. But the deformation corresponding to the nonphysical vertex differs from the linear dilaton in not being worldsheet parity even. The nonphysically deformed worldsheet theory has nonzero beta-function at one loop. This means that the classical Type IIB SUGRA backgrounds are not completely characterized by requiring the BRST symmetry of the classical worldsheet theory; it is also necessary to require the vanishing of the one-loop beta-function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical method is proposed to study the attitude stability of a triaxial spacecraft moving in a circular Keplerian orbit in the geomagnetic field. The method is developed based on the electrodynamics effect of the influence of the Lorentz force acting on the charged spacecraft's surface. We assume that the rigid spacecraft is equipped with an electrostatic charged protective shield, having an intrinsic magnetic moment. The main elements of this shield are an electrostatic charged cylindrical screen surrounding the protected volume of the spacecraft. The rotational motion of the spacecraft about its centre of mass due to torques from gravitational force, as well Lorentz and magnetic forces is investigated. The equilibrium positions of the spacecraft in the orbital coordinate system are obtained. The necessary and sufficient conditions for the stability of the spacecraft's equilibrium positions are constructed using Lyapunov's direct method. The numerical results have shown that the Lorentz force has a significant influence on the stability of the equilibrium positions, which can affect the attitude stabilization of the spacecraft. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.