877 resultados para SPINAL-CORD
Resumo:
Spinal cord injury is a complex pathology often resulting in functional impairment and paralysis. Gene therapy has emerged as a possible solution to the problems of limited neural tissue regeneration through the administration of factors promoting axonal growth, while also offering long-term local delivery of therapeutic molecules at the injury site. Of note, gene therapy is our response to the requirements of neural and glial cells following spinal cord injury, providing, in a time-dependent manner, growth substances for axonal regeneration and eliminating axonal growth inhibitors. Herein, we explore different gene therapy strategies, including targeting gene expression to modulate the presence of neurotrophic growth or survival factors and increase neural tissue plasticity. Special attention is given to describing advances in viral and non-viral gene delivery systems, as well as the available routes of gene delivery. Finally, we discuss the future of combinatorial gene therapies and give consideration to the implementation of gene therapy in humans. © 2014 Future Science Ltd.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. MR16-1 antibodies versus isotype control antibodies or saline alone was administered immediately after thoracic SCI in mice. MR16-1-treated group samples showed increased neuronal regeneration and locomotor recovery compared with controls. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. MR16-1 treatment promoted arginase-1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site and enhanced positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages.
Resumo:
Background and objective: Spinal cord stimulation (SCS) is believed to exert supraspinal effects; however, these mechanisms are still far from fully elucidated. This systematic review aims to assess existing neurophysiological and functional neuroimaging literature to reveal current knowledge regarding the effects of SCS for chronic neuropathic pain on brain activity, to identify gaps in knowledge, and to suggest directions for future research. Databases and data treatment: Electronic databases and hand-search of reference lists were employed to identify publications investigating brain activity associated with SCS in patients with chronic neuropathic pain, using neurophysiological and functional neuroimaging techniques (fMRI, PET, MEG, EEG). Studies investigating patients with SCS for chronic neuropathic pain and studying brain activity related to SCS were included. Demographic data (age, gender), study factors (imaging modality, patient diagnoses, pain area, duration of SCS at recording, stimulus used) and brain areas activated were extracted from the included studies. Results: Twenty-four studies were included. Thirteen studies used neuroelectrical imaging techniques, eight studies used haemodynamic imaging techniques, two studies employed both neuroelectrical and haemodynamic techniques separately, and one study investigated cerebral neurobiology. Conclusions: The limited available evidence regarding supraspinal mechanisms of SCS does not allow us to develop any conclusive theories. However, the studies included appear to show an inhibitory effect of SCS on somatosensory evoked potentials, as well as identifying the thalamus and anterior cingulate cortex as potential mediators of the pain experience. The lack of substantial evidence in this area highlights the need for large-scale controlled studies of this kind.
Resumo:
Greater inclusion of individuals with disabilities into mainstream society is an important goal for society. One of the best ways to include individuals is to actively promote and encourage their participation in the labor force. Of all disabilities, it is feasible to assume that individual with spinal cord injuries can be among the most easily mainstreamed into the labor force. However, less that fifty percent of individuals with spinal cord injuries work. ^ This study focuses on how disability benefit programs, such as Social Security Disability Insurance, and Worker's Compensation, the Americans with Disabilities Act and rehabilitation programs affect employment decisions. The questions were modeled using utility theory with an augmented expenditure function and indifference theory. Statically, Probit, Logit, predicted probability, and linear regressions were used to analyze these questions. Statistical analysis was done on the probability of working, ever attempting to work after injury, and on the number of years after injury that work was first attempted and the number of hours worked per week. The data utilized were from the National Spinal Cord Injury Database and the Spinal Cord Injuries and Labor Database. The Spinal Cord Injuries and Labor Database was created specifically for this study by the author. Receiving disability benefits decreased the probability of working, of ever attempting to work, increased the number of years after injury before the first work attempt was made, and decreased the number of hours worked per week for those individuals working. These results were all statistically significant. The Americans with Disabilities Act decrease the number of years before an individual made a work attempt. The decrease is statistically significant. The amount of rehabilitation had a significant positive effect for male individuals with low paraplegia, and significant negative effect for individuals with high tetraplegia. For women, there were significant negative effects for high tetraplegia and high paraplegia. ^ This study finds that the financial disincentives of receiving benefits are the major determinants of whether an individual with a spinal cord injury returns to the labor force. Policies are recommended that would decrease the disincentive. ^
Resumo:
ackground Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. Methods 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. Results Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. Conclusions Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.
Resumo:
Greater inclusion of individuals with disabilities into mainstream society is an important goal for society. One of the best ways to include individuals is to actively promote and encourage their participation in the labor force. Of all disabilities, it is feasible to assume that individual with spinal cord injuries can be among the most easily mainstreamed into the labor force. However, less that fifty percent of individuals with spinal cord injuries work. This study focuses on how disability benefit programs, such as Social Security Disability Insurance, and Worker's Compensation, the Americans with Disabilities Act and rehabilitation programs affect employment decisions. The questions were modeled using utility theory with an augmented expenditure function and indifference theory. Statically, Probit, Logit, predicted probability, and linear regressions were used to analyze these questions. Statistical analysis was done on the probability of working, ever attempting to work after injury, and on the number of years after injury that work was first attempted and the number of hours worked per week. The data utilized were from the National Spinal Cord Injury Database and the Spinal Cord Injuries and Labor Database. The Spinal Cord Injuries and Labor Database was created specifically for this study by the author. Receiving disability benefits decreased the probability of working, of ever attempting to work, increased the number of years after injury before the first work attempt was made, and decreased the number of hours worked per week for those individuals working. These results were all statistically significant. The Americans with Disabilities Act decrease the number of years before an individual made a work attempt. The decrease is statistically significant. The amount of rehabilitation had a significant positive effect for male individuals with low paraplegia, and significant negative effect for individuals with high tetraplegia. For women, there were significant negative effects for high tetraplegia and high paraplegia. This study finds that the financial disincentives of receiving benefits are the major determinants of whether an individual with a spinal cord injury returns to the labor force. Policies are recommended that would decrease the disincentive.
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
© 2015 American Neurological Association. Funded by The Euan MacDonald Center for Motor Neurone Disease Research The SMA Trust Muscular Dystrophy UK The SMA Trust The SMA Trust Motor Neurone Disease Association National Institute for Health Research Great Ormond Street Hospital Biomedical Research Center Medical Research Council Great Ormond Street Hospital Charity
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of people each year. Although in recent decades significant progress has been made in relation to understanding the molecular and cellular events underlying the nervous damage, spinal cord injury is still a highly disabling condition for which there is no curative therapy. People affected by spinal cord injuries manifested dysfunction or loss, temporary or permanent, of motor, sensory and / or autonomic functions depending on the spinal lesion damaged. Currently, the incidence rate of this type of injury is approximately 15-40 cases per million people worldwide. At the origin of these lesions are: road accidents, falls, interpersonal violence and the practice of sports. In this work we placed the hypothesis that HA is one of the component of the scar tissue formed after a compressive SCI, that it is likely synthetised by the perilesional glial cells and that it might support the permeation of the glial scar during the late phase of SCI. Nowadays, much focus is drawn on the recovery of CNS function, made impossible after SCI due to the high content of sulfated proteoglycans in the extracellular matrix. Counterbalancing the ratio between these proteoglycans and hyaluronic acid could be one of the experimental therapy to re-permeate the glial scar tissue formed after SCI, making possible axonal regrowth and functional recovery. Therefore, we established a model of spinal cord compression in mice and studied the glial scar tissue, particularly through the characterization of the expression of enzymes related to the metabolism of HA and the subsequent concentration thereof at different distances of the lesion epicenter. Our results show that the lesion induced in mice shows results similar to those produced in human lesions, in terms of histologic similarities and behavioral results. but these animals demonstrate an impressive spontaneous reorganization mechanism of the spinal cord tissue that occurs after injury and allows for partial recovery of the functions of the CNS. As regards the study of the glial scar, changes were recorded at the level of mRNA expression of enzymes metabolizing HA i.e., after injury there was a decreased expression of HA synthases 1-2 (HAS 1-2) and an increase of the expression HAS3 synthase mRNA, as well as the enzymes responsible for the HA catabolism, HYAL 1-2. But the amount of HA measured through the ELISA test was found unchanged after injury, it is not possible to explain this fact only with the change of expression of enzymes. At two weeks and in response to SCI, we found synthesized HA by reactive astrocytes and probably by others like microglial cells as it was advanced by the HA/GFAP+ and HA/IBA1+ cells co-location.