997 resultados para SPIN-ORBIT EFFECTS
Resumo:
The aim of this work was to investigate the role played by an external field on the Casimir energy density for massive fermions under S-1 x R-3 topology. Both twisted- and untwisted-spin connections are considered and the calculation in a closed form is performed using an alternative approach based on the combination of the analytic regularization method and the Euler-Maclaurin summation formula. It is shown that no mass scale appears in the final result and, therefore, Casimir effect arises only from the boundary conditions and vacuum fluctuations induced by the coupling with the external field.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An analytical approach for spin-stabilized spacecraft attitude prediction is presented for the influence of the residual magnetic torques. Assuming an inclined dipole model for the Earth's magnetic field, an analytical averaging method is applied to obtain the mean residual torque every orbital period. The orbit mean anomaly is utilized to compute the average components of residual torque in the spacecraft body frame reference system. The theory is developed for time variations in the orbital elements, and non-circular orbits, giving rise to many curvature integrals. It is observed that the residual magnetic torque does not have component along the spin axis. The inclusion of this torque on the rotational motion differential equations of a spin stabilized spacecraft yields conditions to derive an analytical solution. The solution shows that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spin axis of the spacecraft. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Due to the tides, the orbits of Phobos and Triton are contracting. While their semi major axes are decreasing, several possibilities of secular resonances involving node, argument of the pericenter and mean motion of the Sun will take place. In the case of Mars, if the obliquity (epsilon), during the passage through some resonances, is not so small, very significant variations of the inclination will appear. In one case, capture is almost certain provided that epsilon greater than or equal to 20degrees. For Triton there are also similar situations, but capture seems to be not possible, mainly because in S-1 state, Triton's orbit is sufficiently inclined (far) with respect to the Neptune's equator. Following Chyba et al. (Astron. Astrophys. 219 (1989) 123), a simplified equation that gives the evolution of the inclination versus the semi major axis, is derived. The time needed for Triton crash onto Neptune is longer than that one obtained by these authors, but the main difference is due to the new data used here. In general, even in the case of non-capture passages, some significant jumps in inclination and in eccentricities are possible. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electron spin resonance of Eu(2+) (4f(7), S=7/2) in a La hexaboride (LaB(6)) single crystal shows a single anisotropic Dysonian resonance. From the observed negative g shift of the resonance, it is inferred that the Eu(2+) ions are covalent exchange coupled to the B 2p-like host conduction electrons. From the anisotropy of the spectra (linewidth and field for resonance), we found that the S ground state of Eu(2+) ions experience a cubic crystal field of a negative fourth order crystal field parameter (CFP), b(4)=-11.5(2.0) Oe, in agreement with the negative fourth order CFP, A(4), found for the non-S ground state R hexaborides. These results support covalency as the dominant contribution to the fourth order CFP for the whole R hexaboride family.
Resumo:
The electron spin resonance (ESR) spectra of Eu2+ (4f(7), S = 7/2) in LaB6 single crystal show a single Dysonian resonance for the localized Eu2+ magnetic moments. It is shown that the Eu2+ ions are covalent exchange coupled to the (B) 2p-like host conduction electrons. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Gravitational capture is a characteristic of some dynamical systems in celestial mechanics, as in the elliptic restricted three-body problem that is considered in this paper. The basic idea is that a spacecraft (or any particle with negligible mass) can change a hyperbolic orbit with a small positive energy around a celestial body into an elliptic orbit with a small negative energy without the use of any propulsive system. The force responsible for this modification in the orbit of the spacecraft is the gravitational force of the third body involved in the dynamics. In this way, this force is used as a zero cost control, equivalent to a continuous thrust applied in the spacecraft. One of the most important applications of this property is the construction of trajectories to the Moon. The objective of the present paper is to study in some detail the effects of the eccentricity of the primaries in this maneuver.
Resumo:
This work presents the study of substrate surface effects on rhodamine B-containing silica films obtained from TEOS (tetraethylorthosilicate) acid hydrolysis. Soda-lime glass substrates were treated with basic solution under different reaction times and temperatures. Rhodamine B-containing silica films were deposited on pre-treated substrates by the spin-coating method. The substrate surface directly affects film morphology and homogeneity. The films are formed by packed silica spheres which protect the dye against acid-base attack. Luminescence spectra present shifts on the dye emission maximum as expected for different pH values on the substrate surface depending on the alkaline treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Some synthetic metals show in addition to good conductivity, high microwave dielectric constants. In this work, it is shown how conduction-electron spin resonance(CESR) lineshape can be affected by these high constants. The conditions for avoiding these effects in the CESR measurements are discussed as well as a method for extracting microwave dielectric constants from CESR lines. (C) 1995 Academic Press, Inc.
Resumo:
We show that an extra constant of motion with an analytic form can exist in the neighborhood of some discrete circular orbits of helium when one includes retardation and self-interaction effects. The energies of these discrete stable circular orbits are in the correct atomic magnitude. The highest frequency in the stable manifold of one such orbit agrees with the highest frequency sharp line of parahelium to within 2%. The generic term of the frequency in the stable manifold to higher orbits is also in agreement with the asymptotic form of quantum mechanics for helium.