982 resultados para SOUTHERN-OSCILLATION INDEX
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Amapá State has an important natural lake system, known as The Amapá Lakes Region . Most of these lakes are on the southern part of Amapá s coastal plain, which has 300 km of extension and it s composed by holocenic sediments deposited at the northern part of Amazon River to the Orange Cape located on the northern part of Amapá state. This region is under influence of the Amazon River discharge which is the largest liquid discharge of about 209.000 m³/s and biggest sediment budget discharged on the ocean in the order 6.108 ton per day. The climate is influenced by the Intertropical Convergence Zone and El Niño Southern Oscillation which act mainly under precipitation, nebulosity, local rivers and tidal hidrology. In this region lake belts are Ocidental, Oriental and Meridional Lake Belts. The last one is formed by the by the lakes Comprido de Cima, Botos, Bacia, Lodão, Ventos, Mutuco and Comprido de Baixo. These lakes are the closest to the Araguari River and are characterized by pelitic sedimentation associated with fluvial and estuarine flood plains under influence of tides. The lakes are interconnected, suffer influence of flood pulses from the Tartarugal, Tartarugalzinho and Araguari rivers and the hydrodynamic and morphodynamic know edge is poor. Volume and area reduction, natural eutrophication, anthophic influence, hidrodynamic alterations, morphological changes and are factors which can contribute to the closing of such lakes on the Meridional Lake Belt. This belt is inside the boundaries of the Biological Reserve of Piratuba Lake, created in 1980 for integral protection. Due to the fragility of the environment together with the poor knowledge of the system and with the study area relevancy it is necessary to know the hydrodynamic and geoenvironmental processes. This work aims the characterization of morphodynamic and hydrodynamic processes in order to understand the geoambiental context of the Meridional Lake Belt, from the Comprido de Baixo Lake to the dos Ventos Lake, including the Tabaco Igarape. Methodology was based on the hydrodynamic data acquisition: liquid discharge (acoustic method), tides, bathymetry and the interpretation of multitemporal remote sensing images, integrated in a Geographic Information System (GIS). By this method charts of the medium liquid discharges of Lake Mutuco and Tabacco Igarape the maximum velocity of flow were estimated in: 1.1 m/s, 1.6 m/s and 1.6 m/s (rainy season) and 0.6 m/s, 0.6 m/s and 0.7 m/s (dry period), the maximum flow in: 289 m³/s, 297 m³/s and 379 m³/s (rainy season) and 41 m³/s , 79 m³/s and 105 m³/s (dry period), respectively. From the interpretation of multitemporal satellite images, maps were developed together with the analysis of the lakes and Tobaco Igarape evolution from 1972 to 2008, and were classified according to the degree of balance in the area: stable areas, eutrophic areas, areas of gain, and eroded areas. Troughout analysis of the balance of areas, it was possible to quantify the volume of lake areas occupied by aquatic macrophytes. The study sought to understand the hydrodynamic and morphodynamic processes occurring in the region, contributing to the elucidation of the processes which cause and/or favor geoenvironmental changes in the region; all such information is fundamental to making the management of the area and further definition of parameters for environmental monitoring and contributing to the development of the management plan of the Biological Reserve of Lake Piratuba. The work activities is a part of the Project "Integration of Geological, geophysical and geochemical data to Paleogeographic rebuilding of Amazon Coast, from the Neogene to the Recent
Resumo:
The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ (14)C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-alpha was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-alpha time series were available.
A new method for real time computation of power quality indices based on instantaneous space phasors
Resumo:
One of the important issues about using renewable energy is the integration of dispersed generation in the distribution networks. Previous experience has shown that the integration of dispersed generation can improve voltage profile in the network, decrease loss etc. but can create safety and technical problems as well, This work report the application of the instantaneous space phasors and the instantaneous complex power in observing performances of the distribution networks with dispersed generators in steady state. New IEEE apparent power definition, the so called Buccholz-Goodhue apparent power, as well as new proposed power quality (oscillation) index in the three-phase distribution systems with unbalanced loads and dispersed generators, are applied. Results obtained from several case studies using IEEE 34 nodes test network are presented and discussed.
Resumo:
Includes Bibliography
Resumo:
Este estudo visa apresentar uma análise atmosférica da variabilidade espacial e temporal da Zona de Convergência Intertropical (ZCIT) nas cidades de Belém, Jakarta e Nairóbi, que estão localizadas sobre os continentes da América do Sul, Ásia e África, respectivamente. Para isso, foram utilizados dados diários de precipitação observada e radiação de onda longa para o período de 1999 a 2008, e aplicadas as técnicas matemáticas e estatísticas, como a média aritmética e a transformada em ondeletas Morlet. Em geral, os resultados indicam que do ponto de vista espacial, a precipitação mensal varia consideravelmente, pois as três cidades estudadas localizam-se em diferentes continentes da faixa tropical. Isto ocorre principalmente, durante os meses de Janeiro a Maio, período de maior atuação da ZCIT no hemisfério sul. As variações atmosféricas observadas, a partir dos escalogramas de fase, - de ondeleta indicam que as escalas interdecadal, anual, interanual e intrassazonal são moduladoras da precipitação. Tais escalas podem ser representadas pelos mecanismos oceano-atmosfera dos fenômenos El Niño Oscilação Sul e da oscilação intrassazonal de Madden e Julian. A contribuição destes fenômenos na distribuição da chuva nessas regiões é evidente durante o período estudado, sendo que Nairóbi, apesar de estar localizada em latitude semelhante à de Belém, apresenta pouca evidência do ciclo anual e forte na escala interdecadal. No caso de Belém e de Jakarta as oscilações de múltiescala de precipitação concentram-se nas escalas dos mecanismos moduladores da chuva associados com o ciclo anual e intrassazonal, durante todo o período.
Resumo:
Tendo como foco as múltiplas escalas de tempo que atuam na Amazônia, este trabalho foi desenvolvido com o objetivo de investigar a possível influencia da Oscilação Madden – Julian (OMJ) em elementos turbulentos da CLP. A OMJ foi identificada a partir de 30 anos de dados de reanálise de radiação de onda longa (ROL) e componente zonal do vento (u). As grandezas turbulentas foram estudadas a partir da variância, covariância e coeficiente de correlação de um conjunto de dados de resposta rápida coletado na torre micrometeorológica de Caxiuanã (PA), e tratados com a Transformada em Ondeletas (TO) para se obter a contribuição de cada escala para estes momentos estatísticos. A análise dos 30 anos de dados de ROL e u mostrou que a ocorrência da OMJ está ligada com o fenômeno do El Niño/Oscilação Sul (ENOS), bem como influência do ENOS no tempo da região amazônica pode estar associado a presença ou não da OMJ. Foi observado que anos de El Niño tendem a desfavorecer a ocorrência da OMJ e anos de La Niña tendem a favorecer o desenvolvimento da oscilação. Caso uma OMJ se desenvolva durante um episodio de El Niño, a oscilação pode influenciar a temperatura, a velocidade do vento e a precipitação de forma diferente ao do El Niño. A análise por fase da OMJ mostrou que, em Belém, há diferença significativa na temperatura máxima e na precipitação entre cada fase, porém, a temperatura mínima e o módulo do vento apresentaram pouca diferença. Os fluxos cinemáticos turbulentos analisados, por escala, em três horários distintos, foram mais diferentes durante o período diurno, principalmente w’T’ e w’q’. A diferença entre fase ativa e fase inativa foi reduzindo com passar do dia, durante o período de transição dia – noite, poucas escalas tiveram diferença significativa, e durante a noite, nenhuma escala teve nível de confiança acima ou igual a 95%. Estes resultados indicam que a convecção diurna é o mecanismo responsável por esta diferença e como a OMJ atua como uma grande célula convectiva, a convecção local é amplificada, explicando a grande diferença observada entre as fases durante o período diurno.
Resumo:
O objetivo do presente trabalho foi agregar diferentes redes de estações meteorológicas de superfície para a criação de um novo banco de dados integrado, a partir do qual foi gerada uma climatologia recente (1978-2007) para a precipitação do estado do Pará em alta resolução espacial – 30 km, permitindo melhor identificar a variabilidade climática regional, sobretudo influenciada pelos aspectos da fisiografia e em função de mecanismos climáticos de grande escala dos oceanos Pacífico e Atlântico. Buscou-se, ainda, estabelecer uma configuração otimizada do modelo climático RegCM3 utilizando duas diferentes parametrizações de cumulus: RegCM3/Grell e RegCM3/MIT. Foram realizadas 26 simulações (1982/83 a 2007/08) durante a estação chuvosa na Amazônia oriental (dezembro a maio) para cada esquema de parametrização convectiva, utilizando 30 km de resolução espacial. O modelo mostrou-se capaz de capturar os sinais de anomalia na presença de forçantes climáticas extremas, como o El Niño-Oscilação Sul e o dipolo do Atlântico. O RegCM3/MIT obteve ótimo desempenho na região de Altamira/PA e performance razoável nos setores Nordeste (região de Belém), Leste ( região de Marabá), Sudeste (região de Conceição do Araguaia), e Noroeste (região de Tiriós). O RegCM3/Grell destacou-se nas regiões Nordeste, Leste, Sudeste e Noroeste, com desempenho razoável. O setor Norte (região de Macapá) foi o mais problemático, com pouca ou nenhuma sensibilidade apresentada pelo modelo. Embora o RegCM3 tenha obtido resultados razoáveis na maior parte do domínio, foram detectados erros sistemáticos nas simulações, com viés seco para o RegCM3/Grell e viés úmido para o RegCM3/MIT na porção Sul e viés seco na porção Norte. Estas características denotam a necessidade de ajustes às condições regionais dos esquemas de convecção.
Resumo:
The prime movers behind the prehistoric colonization of Remote Oceania, and in particular the large c. 2000-year temporal gap (i.e. long pause') seen between West and East Polynesia, has long been major point of interest in the Pacific. To address these events and the processes that may have led to the known chronological disparity of these diasporas, we present results from two different, but equally powerful, analytical tools which are used to examine Polynesian seafaring capabilities and trajectories. The first is a statistical model known as Seascape, which simulates voyages, while the second uses ease of eastward travel estimates based on land distribution and wind pattern analysis. These analyses were done with the goal of determining the potential role of environmental factors in the colonization process, particularly as they relate to the long pause. We show that the eastern boundary of West Polynesia, the limit of the initial colonization pulse, is marked by a discontinuity in land distribution, where the distances travelers would have to cross in order to reach islands further to the east become significantly larger. At the same time, in West Polynesia, the frequency and intensity of winds favorable to eastward displacement decrease continuously from west to east. As far as winds are concerned, eastward travel in West Polynesia is favored in the northern and southern areas and much more difficult across the central portion. Favorable winds have a clear seasonality, and eastward displacement along the northern area is much easier under El Nino conditions. Voyaging simulations show that intentional eastward voyages departing from Tonga and Samoa, when undertaken with vessels capable of sailing efficiently against the wind, afford a viable route toward several island groups in East Polynesia, with trips starting in Samoa having a higher probability of success.
Resumo:
Examples are presented of inter-hemispheric comparison of instrumental climate and paleoclimate proxy records from the Americas for different temporal scales. Despite a certain symmetry of seasonal precipitation patterns along the PEP 1 transect, decadal variability of winter precipitation shows different characteristics in terms of amplitude and frequency in both the last 100 and last 1000 years. Such differences in variability are also seen in a comparison of time series of different El Nino/Southern Oscillation proxy records from North and South America, however, these differences do not appear to affect the spatial correlation with Pacific sea surface temperature patterns. Local and regional differences in response to climate change are even more pronounced for records with lower temporal resolution, and inter-hemispheric synchroneity may or may not be indicative of the same forcing. This aspect is illustrated in an inter-hemispheric comparison of the last 1000 years of glacier variability, and of the full- and late-glacial lake level history.
Resumo:
; High-resolution grain size analyses of three AMS (14)C-dated cores from the Southeastern Brazilian shelf provide a detailed record of mid- to late-Holocene environmental changes in the Southwestern Atlantic Margin. The cores exhibit millennial variability that we associate with the previously described southward shift of the Inter Tropical Convergence Zone (ITCZ) average latitudinal position over the South American continent during the Holocene climatic maximum. This generated changes in the wind-driven current system of the SW Atlantic margin and modified the grain size characteristics of the sediments deposited there. Centennial variations in the grain size are associated with a previously described late-Holocene enhancement of the El Nino-Southern Oscillation (ENSO) amplitude, which led to stronger NNE trade winds off eastern Brazil, favouring SW transport of sediments from the Paraiba do Sul River. This is recorded in a core from off Cabo Frio as a coarsening trend from 3000 cal. BP onwards. The ENSO enhancement also caused changes in precipitation and wind pattern in southern Brazil, allowing high discharge events and northward extensions of the low-saline water plume from Rio de la Plata. We propose that this resulted in a net increase in northward alongshore transport of fine sediments, seen as a prominent fine-shift at 2000 cal. BP in a core from similar to 24 degrees S on the Brazilian shelf. Wavelet-and spectral analysis of the sortable silt records show a significant similar to 1000-yr periodicity, which we attribute to solar forcing. If correct, this is one of the first indications of solar forcing of this timescale on the Southwestern Atlantic margin.
Resumo:
Two growth patterns are recognized in shallow-water ophiuroids: (I) slow growth and early reproductive maturity over a long life span and (2) rapid growth with a short life span. For species with the first pattern, both growth and recruitment would reflect a reproductive pattern with long periods of resting and spawning concentrated in certain months of the year. To evaluate this hypothesis, the recruitment, population dynamics, and growth of the intertidal brittle star Ophionereis reticulata were analyzed from January 2001 to December 2002 at the Baleciro Isthmus on the southeast coast of Brazil. The species shows an annual gametogenic cycle with spawning taking place in summer. Densities varied from 0.46 to 9.46 individuals m(-2). Density variations and seawater temperature were not significantly correlated. The population structure of O. reticulata was polymodal, with at least four co-occurring cohorts. Recruitment events were recorded in March 2001, October 2001, January 2002, and September 2002. As indicated by the asymptote size (D(infinity)=11.47 mm +/- 1.46), growth constant (K=0.42 year(-1)+/- 0.12), and oscillation index (C=0.97 +/- 0.51), the growth pattern of O. reticulata seems to be based on high survivorship of juveniles and adults, where sexual maturity is reached at a small size with rapid growth in the first 2 years of life. A low level of settlement is to be expected based on these data; however, there must be a minimum successful survivorship and development for juveniles and adults. Another explanation for the lack of small individuals (disc diameter <1.0 mm) could be that recruitment is located in a different area and a post-settlement migration might be involved in the maintenance of the population.
Resumo:
This study analyzes important aspects of the tropical Atlantic Ocean from simulations of the fourth version of the Community Climate System Model (CCSM4): the mean sea surface temperature (SST) and wind stress, the Atlantic warm pools, the principal modes of SST variability, and the heat budget in the Benguela region. The main goal was to assess the similarities and differences between the CCSM4 simulations and observations. The results indicate that the tropical Atlantic overall is realistic in CCSM4. However, there are still significant biases in the CCSM4 Atlantic SSTs, with a colder tropical North Atlantic and a hotter tropical South Atlantic, that are related to biases in the wind stress. These are also reflected in the Atlantic warm pools in April and September, with its volume greater than in observations in April and smaller than in observations in September. The variability of SSTs in the tropical Atlantic is well represented in CCSM4. However, in the equatorial and tropical South Atlantic regions, CCSM4 has two distinct modes of variability, in contrast to observed behavior. A model heat budget analysis of the Benguela region indicates that the variability of the upper-ocean temperature is dominated by vertical advection, followed by meridional advection.
Resumo:
The most ocean - atmosphere exchanges take place in polar environments due to the low temperatures which favor the absorption processes of atmospheric gases, in particular CO2. For this reason, the alterations of biogeochemical cycles in these areas can have a strong impact on the global climate. With the aim of contributing to the definition of the mechanisms regulating the biogeochemical fluxes we have analyzed the particles collected in the Ross Sea in different years (ROSSMIZE, BIOSESO 1 and 2, ROAVERRS and ABIOCLEAR projects) in two sites (mooring A and B). So it has been developed a more efficient method to prepare sediment trap samples for the analyses. We have also processed satellite data of sea ice, chlorophyll a and diatoms concentration. At both sites, in each year considered, there was a high seasonal and inter-annual variability of biogeochemical fluxes closely correlated with sea ice cover and primary productivity. The comparison between the samples collected at mooring A and B in 2008 highlighted the main differences between these two sites. Particle fluxes at Mooring A, located in a polynia area, are higher than mooring B ones and they happen about a month before. In the mooring B area it has been possible to correlate the particles fluxes to the ice concentration anomalies and with the atmospheric changes in response to El Niño Southern Oscillations. In 1996 and 1999, years subjected to La Niña, the concentrations of sea ice in this area have been less than in 1998, year subjected to El Niño. Inverse correlation was found for 2005 and 2008. In the mooring A area significant differences in mass and biogenic fluxes during 2005 and 2008 has been recorded. This allowed to underline the high variability of lateral advection processes and to connect them to the physical forcing.
Resumo:
Bivalve mollusk shells are useful tools for multi-species and multi-proxy paleoenvironmental reconstructions with a high temporal and spatial resolution. Past environmental conditions can be reconstructed from shell growth and stable oxygen and carbon isotope ratios, which present an archive for temperature, freshwater fluxes and primary productivity. The purpose of this thesis is the reconstruction of Holocene climate and environmental variations in the North Pacific with a high spatial and temporal resolution using marine bivalve shells. This thesis focuses on several different Holocene time periods and multiple regions in the North Pacific, including: Japan, Alaska (AK), British Columbia (BC) and Washington State, which are affected by the monsoon, Pacific Decadal Oscillation (PDO) and El Niño/Southern Oscillation (ENSO). Such high-resolution proxy data from the marine realm of mid- and high-latitudes are still rare. Therefore, this study contributes to the optimization and verification of climate models. However, before using bivalves for environmental reconstructions and seasonality studies, life history traits must be well studied to temporally align and interpret the geochemical record. These calibration studies are essential to ascertain the usefulness of selected bivalve species as paleoclimate proxy archives. This work focuses on two bivalve species, the short-lived Saxidomus gigantea and the long-lived Panopea abrupta. Sclerochronology and oxygen isotope ratios of different shell layers of P. abrupta were studied in order to test the reliability of this species as a climate archive. The annual increments are clearly discernable in umbonal shell portions and the increments widths should be measured in these shell portions. A reliable reconstruction of paleotemperatures may only be achieved by exclusively sampling the outer shell layer of multiple contemporaneous specimens. Life history traits (e.g., timing of growth line formation, duration of the growing season and growth rates) and stable isotope ratios of recent S. gigantea from AK and BC were analyzed in detail. Furthermore, a growth-temperature model based on S. gigantea shells from Alaska was established, which provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). This approach allows the independent measurement of water temperature and salinity from variations in the width of lunar daily growth increments of S. gigantea. Temperature explains 70% of the variability in shell growth. The model was calibrated and tested with modern shells and then applied to archaeological specimens. The time period between 988 and 1447 cal yrs BP was characterized by colder (~1-2°C) and much drier (2-5 PSU) summers, and a likely much slower flowing ACC than at present. In contrast, the summers during the time interval of 599-1014 cal yrs BP were colder (up to 3°C) and fresher (1-2 PSU) than today. The Aleutian Low may have been stronger and the ACC was probably flowing faster during this time.