984 resultados para SOIL SCIENCE
Resumo:
Slumping of hardsetting seedbeds upon wetting is likely to determine the shrinking and development of strength on drying. Different processes have been invoked, including aggregate disruption, material relocation, and compaction. To gain a better understanding of the role played by compaction compared with aggregate disruption in seedbed slumping and shrinking, mechanical analysis was combined with previous morphogenetical description. The global structural behavior of repacked seedbeds of a hardsetting sandy loam soil was studied after wetting and again after subsequent drying. Bulk density was measured in 5-mm-depth increments using gamma attenuation, and water content was determined at 10-mm-depth increments. Various wetting conditions were used to simulate a range of climatic and management conditions, including flood irrigation, furrow irrigation of a formed seedbed, drip irrigation, and rainfall. Aggregate coalescence under overburden pressure played the main role in slumping, even though microcracking enhanced coalescence. Most of the slumping occurred at calculated effective stress > 1.1 kPa. Intense aggregate breakdown at the top of seedbeds under fast wetting led to slight slumping because the resulting clogging of the initial interaggregate packing voids was balanced, in part, by the increase in microporosity resulting from aggregate disruption. However, aggregate coalescence induced by overburden pressure developing at the seedbed bottom often resulted in a strong decrease in total porosity. The effect of rainfall kinetic energy on crust bulk density was strong compared with the effect of fast wetting (bulk density increase of about 0.07 Mg m(-3) and 0.03 Mg m(-3), respectively) and could be ascribed to compaction rather than to aggregate breakdown. Shrinking on drying was related to the continuity of the microstructure resulting from wetting rather than to the intensity of slumping. Aggregate breakdown led to more shrinking than did aggregate coalescence.
Resumo:
Direct and simultaneous observation of root growth and plant water uptake is difficult because soils are opaque. X-ray imaging techniques such as projection radiography or Computer Tomography (CT) offer a partial alternative to such limitations. Nevertheless, there is a trade-off between resolution, large field-of-view and 3-dimensionality: With the current state of the technology, it is possible to have any two. In this study, we used X-ray transmission through thin-slab systems to monitor transient saturation fields that develop around roots as plants grow. Although restricted to 2-dimensions, this approach offers a large field-of-view together with high spatial and dynamic resolutions. To illustrate the potential of this technology, we grew peas in 1 cm thick containers filled with soil and imaged them at regular intervals. The dynamics of both the root growth and the water content field that developed around the roots could be conveniently monitored. Compared to other techniques such as X-ray CT, our system is relatively inexpensive and easy to implement. It can potentially be applied to study many agronomic problems, such as issues related to the impact of soil constraints (physical, chemical or biological) on root development.
Resumo:
The Australian Soil Resources Information System (ASRIS) database compiles the best publicly available information available across Commonwealth, State, and Territory agencies into a national database of soil profile data, digital soil and land resources maps, and climate, terrain, and lithology datasets. These datasets are described in detail in this paper. Most datasets are thematic grids that cover the intensively used agricultural zones in Australia.
Resumo:
Soil erosion is a major environmental issue in Australia. It reduces land productivity and has off-site effects of decreased water quality. Broad-scale spatially distributed soil erosion estimation is essential for prioritising erosion control programs and as a component of broader assessments of natural resource condition. This paper describes spatial modelling methods and results that predict sheetwash and rill erosion over the Australian continent using the revised universal soil loss equation (RUSLE) and spatial data layers for each of the contributing environmental factors. The RUSLE has been used before in this way but here we advance the quality of estimation. We use time series of remote sensing imagery and daily rainfall to incorporate the effects of seasonally varying cover and rainfall intensity, and use new digital maps of soil and terrain properties. The results are compared with a compilation of Australian erosion plot data, revealing an acceptable consistency between predictions and observations. The modelling results show that: (1) the northern part of Australia has greater erosion potential than the south; (2) erosion potential differs significantly between summer and winter; (3) the average erosion rate is 4.1 t/ha. year over the continent and about 2.9 x 10(9) tonnes of soil is moved annually which represents 3.9% of global soil erosion from 5% of world land area; and (4) the erosion rate has increased from 4 to 33 times on average for agricultural lands compared with most natural vegetated lands.
Resumo:
The aim of this work was to exemplify the specific contribution of both two- and three-dimensional (31)) X-ray computed tomography to characterise earthworm burrow systems. To achieve this purpose we used 3D mathematical morphology operators to characterise burrow systems resulting from the activity of an anecic (Aporrectodea noctunia), and an endogeic species (Allolobophora chlorotica), when both species were introduced either separately or together into artificial soil cores. Images of these soil cores were obtained using a medical X-ray tomography scanner. Three-dimensional reconstructions of burrow systems were obtained using a specifically developed segmentation algorithm. To study the differences between burrow systems, a set of classical tools of mathematical morphology (granulometries) were used. So-called granulometries based on different structuring elements clearly separated the different burrow systems. They enabled us to show that burrows made by the anecic species were fatter, longer, more vertical, more continuous but less sinuous than burrows of the endogeic species. The granulometry transform of the soil matrix showed that burrows made by A. nocturna were more evenly distributed than those of A. chlorotica. Although a good discrimination was possible when only one species was introduced into the soil cores, it was not possible to separate burrows of the two species from each other in cases where species were introduced into the same soil core. This limitation, partly due to the insufficient spatial resolution of the medical scanner, precluded the use of the morphological operators to study putative interactions between the two species.
Resumo:
Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Little is known about the responses of Australian plants to excess metal, including Mn. It is important to remedy this lack of information so that knowledgeable decisions can be made about managing Mn contaminated sites where inhabited by Australian vegetation. Acacia holosericea, Melaleuca leucadendra, Eucalyptus crebra and Eucalyptus camaldulensis were grown in dilute solution culture for 10 weeks. The seedlings ( 42 days old) were exposed to six Mn treatments viz., 1, 8, 32, 128, 512 and 2048 muM. The order of tolerance to toxic concentrations of Mn was A. holosericea congruent to = E. crebra < M. leucadendra < E. camaldulensis, the critical external concentrations being approximately 5.1, 5.0, 21 and 330 muM, respectively. The critical tissue Mn concentrations for the youngest fully expanded leaf and total shoots were, respectively, 265 and 215 mug g(-1) DM for A. holosericea, 445 and 495 mug g(-1) DM for M. leucadendra, 495 and 710 mug g(-1) DM for E. crebra and 7230 and 6510 mug g(-1) DM for E. camaldulensis. The high tolerance of E. camaldulensis ( as opposed to the sensitivity of E. crebra) to excess Mn raises concern about fauna feeding on the plant and is consistent with hypotheses suggesting the Eucalyptus subgenus Symphomyrtus is particularly tolerant of stress, including excess Mn. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the management of Mn toxic sites.
Resumo:
Exponential and sigmoidal functions have been suggested to describe the bulk density profiles of crusts. The present work aims to evaluate these conceptual models using high resolution X-radiography. Repacked seedbeds from two soil materials, air-dried or prewetted by capillary rise, were subjected to simulated rain, which resulted in three types of structural crusts, namely, slaking, infilling, and coalescing. Bulk density distributions with depth were generated using high-resolution (70 mum), calibrated X-ray images of slices from the resin-impregnated crusted seedbeds. The bulk density decreased progressively with depth, which supports the suggestion that a crust should be considered as a nonuniform layer. For the slaking and the coalescing crusts, the exponential function underestimated the strong change in bulk density across the morphologically defined transition between the crust and the underlying material; the sigmoidal function provided a better description. Neither of these crust models effectively described the shape of the bulk density profiles through the whole seedbed. Below the infilling and slaking crusts, bulk density increased linearly with depth as a result of slumping. In the coalescing crusted seedbed, the whole seedbed uniformly collapsed and most of the bulk density change within the crust could be ascribed to slumping (0.33 g cm(-3)) rather than to crusting (0.12 g cm(-3)). Finally, (i) X-radiography appears as a unique tool to generate high resolution bulk density profiles and (ii) in structural crusts, bulk density profiles could be modeled using the existing exponential and sigmoidal crusting models, provided a slumping model would be coupled.
Resumo:
The mineralogy and origin of micas were investigated in incipient soils surrounding a modem alkaline-saline lake of Nhecolandia, a sub-region of Pantanal wetland. Soils were sampled along a toposequence and analyzed by XRD, TEM-EDS, and ICP-MS. The studied micas, mainly concentrated in a green horizon, are dioctahedral, strongly associated with Fe(3+) and Al, and interstratified with smectite layers. Classification of individual crystals shows that glauconite and Fe-illite are the dominant micas, but one crystal of illite was recognized. Si-rich amorphous materials are associated with small crystallites in the mica-enriched horizon. A recent study shows that water samples from the studied lake and the surrounding water table have high pH, negative Eh, temperatures up to 40 C. high concentration of K. and low concentration of Si(OH)(4). Experimental studies of micas synthesis reported in the literature show that similar water conditions allow for dioctahedral mica crystallization from initial precipitation of amorphous hydroxides. Therefore, water characteristics combined with presence of Si-rich amorphous materials in the mica-enriched horizon suggest that the micas of the study area are neoformed. The alternated origin of illite, glauconite, and Fe-illite mixed-layer minerals probably occurs due to seasonal variations of pH. temperature, and chemical composition of waters in microenvironments, since the changes at this scale are possibly faster and more extreme. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Smectite formation in alkaline-saline environments has been attributed to direct precipitation from solution and/or transformation from precursor minerals, but these mechanisms are not universally agreed upon in the literature. The objective of this work was to investigate the mineralogy of smectites in the soils surrounding a representative alkaline-saline lake of Nhecolandia, a sub-region of the Pantanal wetland, Brazil, and then to identify the mechanisms of their formation. Soils were sampled along a toposequence and analyzed by X-ray diffraction, transmission electron microscopy-energy dispersive X-ray analysis, and inductively coupled plasma-mass spectrometry. Water was collected along a transect involving the studied toposequence and equilibrium diagrams were calculated using the databases PHREEQC and AQUA. The fine-clay fraction is dominated by smectite, mica, and kaolinite. Smectites are concentrated at two places in the toposequence: an upper zone, which includes the soil horizons rarely reached by the lake-level variation; and a lower zone, which includes the surface horizon within the area of seasonal lake-level variation. Within the upper zone, the smectite is dioctahedral, rich in Al and Fe, and is classified as ferribeidellite. This phase is interstratified with mica and vermiculite and has an Fe content similar to that of the mica identified. These characteristics suggest that the ferribeidellite originates from transformation of micas and that vermiculite is an intermediate phase in this transformation. Within the lower zone, smectites are dominantly trioctahedral, Mg-rich, and are saponitic and stevensitic minerals. In addition, samples enriched in these minerals have much smaller rare-earth element (REE) contents than other soil samples. The water chemistry shows a geochemical control of Mg and saturation with respect to Mg-smectites in the more saline waters. The REE contents, water chemistry, and the presence of Mg-smectite where maximum evaporation is expected, suggest that saponitic and stevensitic minerals originate by chemical precipitation from the water column of the alkaline-saline lake.
Resumo:
Fire ephemerals are short-lived plants with seeds that persist in the soil and germinate after a fire or physical soil disturbance. Ex situ germination of many Australian fire ephemerals has previously been difficult. Dormancy was present in most of the nine fire ephemerals examined. Alyogyne hakeifolia (Giord.) Alef. and Alyogyne huegelii (Endl.) Fryxell (Malvaceae) seeds had physical and possibly also physiological dormancy, Actinotus leucocephalus Benth. (Apiaceae) seeds had morphophysiological dormancy, Austrostipa compressa (R.Br.) S.W.L. Jacobs & J. Everett and Austrostipa macalpinei (Reader) S.W.L. Jacobs & J. Everett (Poaceae) seeds were either non-dormant or possessed physiological dormancy, and seeds of all remaining species possessed physiological dormancy. A proportion of the Alyogyne hakeifolia, Alyogyne huegelii, Austrostipa compressa and Austrostipa macalpinei seed populations were non-dormant because some seeds could germinate at the various incubation temperatures without further treatment. At 20 degrees C, artificial methods of inducing germination such as manual or acid scarification were among the optimal treatments for Austrostipa compressa, Austrostipa macalpinei, Alyogyne huegelii, Actinotus leucocephalus and Grevillea scapigera A.S. George (Proteaceae), and gibberellic acid induced maximum germination of Tersonia cyathiflora (Fenzl) J.W. Green (Gyrostemonaceae) seeds. Heat (70 degrees C for 1 h) and smoke water was one of the most effective treatments for germinating Actinotus leucocephalus and Codonocarpus cotinifolius (Desf.) F. Muell. (Gyrostemonaceae) seeds. Germination of Grevillea scapigera, Codonocarpus cotinifolius, Gyrostemon racemiger H. Walter (Gyrostemonaceae) and Tersonia cyathiflora did not exceed 40% and may require other treatments to overcome dormancy. Although the nine fire ephemerals examined require fire to germinate under natural conditions, a range of germination responses and dormancy types was observed.
Resumo:
A glasshouse trial, in which maize (Zea mays L. cv. Pioneer 3270) was grown in 35 north-eastern Australian soils of low magnesium (Mg) status, was undertaken to study the response to applied Mg. Of the soils studied, 20 were strongly acidic (pH(1:5 soil:water) <5.4), and in these soils the response to Mg was studied in both the presence and absence of lime. Magnesium application significantly (P < 0.05) increased dry matter yield in 10 soils, all of which were strongly acidic. However, significant Mg responses were recorded in 6 soils in the presence of lime, indicating that, in many situations, liming strategies may need to include consideration of Mg nutrition. Critical soil test values for 90% relative yield were 0.21 cmol(+)/kg of exchangeable Mg or 7% Mg saturation, whilst the critical (90% yield) plant tissue Mg concentration (whole shoots) was 0.15%.
Resumo:
A methodology, based on a combination of routinely performed analyses and investigation of fundamental charge and anion sorption properties, was used to characterize the soils of the humid forest zone of Cameroon, In general, the soils have about 2 cmol kg(-1) permanent negative charge, with about 1 cmol kg(-1) from variable-charge sources at current soil pH values, Furthermore, they are impoverished with respect to Ca, Mg, and K, while Al frequently dominates the exchange complex. Thus, the ability of these soils to retain base cations is more limited than is suggested by the cation-exchange capacity (CEC), Therefore we propose the concept of a degradation index (DI) defined as: DI = 100(CEC5.5 - sum of basic cations)/CEC5.5, where CEC5.5 is the CEC measured at pH 5.5, This index encompasses degradation a soil may have experienced from natural or man-made causes, Extractable PO4 concentrations are considered very low and the soils have a moderate to high capacity to fix added PO4. Surface soil SO4 concentrations are considered marginal to deficient for plant growth, though adequate reserves of SO4 are held in the subsoil by SO4 sorption, The approach used demonstrated that the five morphologically different soil profile classes identified in the zone have similar chemical characteristics. Thus, the results of experimentation conducted on one of the soil profile classes will be applicable throughout the zone, Furthermore, the approach has provided a means of identifying comparable soil types in other parts of the world and will guide technology transfer, The analytical methods used in this study are relatively simple and require no specialized equipment, and are therefore within the capabilities of many laboratories in the developing world.
Resumo:
Despite reports that boron (B) requirements differ among plant species there is a shortage of critical evidence to demonstrate unequivocally whether species differ in internal or external B requirements or both. The present research was conducted to establish the external and internal B requirements of three contrasting species, a woody dicot (marri), an herbaceous dicot (sunflower) and a monocot (wheat) using B-buffered solution culture. Boron-buffered solution culture provided satisfactory control of external B concentrations ranging from 0.04 to 30 muM throughout the 20- (sunflower and wheat) or 40-day (marri) growth period. At low external B concentrations (less than or equal to 0.13 muM), the growth of marri and sunflower was severely depressed but by contrast the vegetative growth of wheat plants was satisfactory and free of B deficiency symptoms. Marri and sunflower plants achieved total maximum shoot growth at greater than or equal to1.2 muM B in solutions while wheat plants did so at greater than or equal to 0.6 muM B. The critical B concentrations (mg kg(-1) dry matter) in the youngest open leaf blades of marri, sunflower and wheat plants were 17.9, 19.7 and 1.2 on 20, 10 and 10 days after transplanting (DAT), respectively. Lower internal and external B requirements of wheat were matched by a lower uptake rate of B compared to marri and sunflower.